1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- import os
- import copy
- from collections import OrderedDict
- import khandy
- import numpy as np
- from .base import OnnxModel
- from .base import check_image_dtype_and_shape
- class InsectIdentifier(OnnxModel):
- def __init__(self):
- current_dir = os.path.dirname(os.path.abspath(__file__))
- model_path = os.path.join(current_dir, 'models/quarrying_insect_identifier.onnx')
- label_map_path = os.path.join(current_dir, 'models/quarrying_insectid_label_map.txt')
- super(InsectIdentifier, self).__init__(model_path)
-
- self.label_name_dict = self._get_label_name_dict(label_map_path)
- self.names = [self.label_name_dict[i]['chinese_name'] for i in range(len(self.label_name_dict))]
- self.num_classes = len(self.label_name_dict)
- @staticmethod
- def _get_label_name_dict(filename):
- records = khandy.load_list(filename)
- label_name_dict = {}
- for record in records:
- label, chinese_name, latin_name = record.split(',')
- label_name_dict[int(label)] = OrderedDict([('chinese_name', chinese_name),
- ('latin_name', latin_name)])
- return label_name_dict
-
- @staticmethod
- def _preprocess(image):
- check_image_dtype_and_shape(image)
-
- # image size normalization
- image = khandy.letterbox_image(image, 224, 224)
- # image channel normalization
- image = khandy.normalize_image_channel(image, swap_rb=True)
- # image dtype normalization
- # image dtype and value range normalization
- mean, stddev = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
- image = khandy.normalize_image_value(image, mean, stddev, 'auto')
- # to tensor
- image = np.transpose(image, (2,0,1))
- image = np.expand_dims(image, axis=0)
- return image
-
- def predict(self, image):
- inputs = self._preprocess(image)
- logits = self.forward(inputs)
- probs = khandy.softmax(logits)
- return probs
-
- def identify(self, image, topk=5):
- assert isinstance(topk, int)
- if topk <= 0 or topk > self.num_classes:
- topk = self.num_classes
-
- probs = self.predict(image)
- topk_probs, topk_indices = khandy.top_k(probs, topk)
- results = []
- for ind, prob in zip(topk_indices[0], topk_probs[0]):
- one_result = copy.deepcopy(self.label_name_dict[ind])
- one_result['probability'] = prob
- results.append(one_result)
- return results
-
-
|