ryanemax c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
..
benchmarks c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
dist c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
scripts c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
src c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
.bazelignore c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
.bazelrc c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
BUILD.bazel c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
README.md c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
cloudbuild.yml c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
package.json c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ
test.html c30f18a9e0 feat: face feat68 model 6 mēneši atpakaļ

README.md

TensorFlow.js Core API

A part of the TensorFlow.js ecosystem, this repo hosts @tensorflow/tfjs-core, the TensorFlow.js Core API, which provides low-level, hardware-accelerated linear algebra operations and an eager API for automatic differentiation.

Check out js.tensorflow.org for more information about the library, tutorials and API docs.

To keep track of issues we use the tensorflow/tfjs Github repo.

Importing

You can install TensorFlow.js via yarn or npm. We recommend using the @tensorflow/tfjs npm package, which gives you both this Core API and the higher-level Layers API:

import * as tf from '@tensorflow/tfjs';
// You have the Core API: tf.matMul(), tf.softmax(), ...
// You also have Layers API: tf.model(), tf.layers.dense(), ...

On the other hand, if you care about the bundle size and you do not use the Layers API, you can import only the Core API:

import * as tfc from '@tensorflow/tfjs-core';
// You have the Core API: tfc.matMul(), tfc.softmax(), ...
// No Layers API.

For info about development, check out DEVELOPMENT.md.

For more information

Thanks BrowserStack for providing testing support.