import { bytes, exists, number, output } from './_assert.js'; import { fromBig } from './_u64.js'; import { BLAKE } from './_blake.js'; import { compress, B2S_IV } from './blake2s.js'; import { u8, u32, toBytes, wrapXOFConstructorWithOpts, isLE, byteSwap32, } from './utils.js'; const SIGMA = /* @__PURE__ */ (() => { const Id = Array.from({ length: 16 }, (_, i) => i); const permute = (arr) => [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8].map((i) => arr[i]); const res = []; for (let i = 0, v = Id; i < 7; i++, v = permute(v)) res.push(...v); return Uint8Array.from(res); })(); // Why is this so slow? It should be 6x faster than blake2b. // - There is only 30% reduction in number of rounds from blake2s // - This function uses tree mode to achive parallelisation via SIMD and threading, // however in JS we don't have threads and SIMD, so we get only overhead from tree structure // - It is possible to speed it up via Web Workers, hovewer it will make code singnificantly more // complicated, which we are trying to avoid, since this library is intended to be used // for cryptographic purposes. Also, parallelization happens only on chunk level (1024 bytes), // which won't really benefit small inputs. class BLAKE3 extends BLAKE { constructor(opts = {}, flags = 0) { super(64, opts.dkLen === undefined ? 32 : opts.dkLen, {}, Number.MAX_SAFE_INTEGER, 0, 0); this.flags = 0 | 0; this.chunkPos = 0; // Position of current block in chunk this.chunksDone = 0; // How many chunks we already have this.stack = []; // Output this.posOut = 0; this.bufferOut32 = new Uint32Array(16); this.chunkOut = 0; // index of output chunk this.enableXOF = true; this.outputLen = opts.dkLen === undefined ? 32 : opts.dkLen; number(this.outputLen); if (opts.key !== undefined && opts.context !== undefined) throw new Error('Blake3: only key or context can be specified at same time'); else if (opts.key !== undefined) { const key = toBytes(opts.key).slice(); if (key.length !== 32) throw new Error('Blake3: key should be 32 byte'); this.IV = u32(key); if (!isLE) byteSwap32(this.IV); this.flags = flags | 16 /* B3_Flags.KEYED_HASH */; } else if (opts.context !== undefined) { const context_key = new BLAKE3({ dkLen: 32 }, 32 /* B3_Flags.DERIVE_KEY_CONTEXT */) .update(opts.context) .digest(); this.IV = u32(context_key); if (!isLE) byteSwap32(this.IV); this.flags = flags | 64 /* B3_Flags.DERIVE_KEY_MATERIAL */; } else { this.IV = B2S_IV.slice(); this.flags = flags; } this.state = this.IV.slice(); this.bufferOut = u8(this.bufferOut32); } // Unused get() { return []; } set() { } b2Compress(counter, flags, buf, bufPos = 0) { const { state: s, pos } = this; const { h, l } = fromBig(BigInt(counter), true); // prettier-ignore const { v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15 } = compress(SIGMA, bufPos, buf, 7, s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7], B2S_IV[0], B2S_IV[1], B2S_IV[2], B2S_IV[3], h, l, pos, flags); s[0] = v0 ^ v8; s[1] = v1 ^ v9; s[2] = v2 ^ v10; s[3] = v3 ^ v11; s[4] = v4 ^ v12; s[5] = v5 ^ v13; s[6] = v6 ^ v14; s[7] = v7 ^ v15; } compress(buf, bufPos = 0, isLast = false) { // Compress last block let flags = this.flags; if (!this.chunkPos) flags |= 1 /* B3_Flags.CHUNK_START */; if (this.chunkPos === 15 || isLast) flags |= 2 /* B3_Flags.CHUNK_END */; if (!isLast) this.pos = this.blockLen; this.b2Compress(this.chunksDone, flags, buf, bufPos); this.chunkPos += 1; // If current block is last in chunk (16 blocks), then compress chunks if (this.chunkPos === 16 || isLast) { let chunk = this.state; this.state = this.IV.slice(); // If not the last one, compress only when there are trailing zeros in chunk counter // chunks used as binary tree where current stack is path. Zero means current leaf is finished and can be compressed. // 1 (001) - leaf not finished (just push current chunk to stack) // 2 (010) - leaf finished at depth=1 (merge with last elm on stack and push back) // 3 (011) - last leaf not finished // 4 (100) - leafs finished at depth=1 and depth=2 for (let last, chunks = this.chunksDone + 1; isLast || !(chunks & 1); chunks >>= 1) { if (!(last = this.stack.pop())) break; this.buffer32.set(last, 0); this.buffer32.set(chunk, 8); this.pos = this.blockLen; this.b2Compress(0, this.flags | 4 /* B3_Flags.PARENT */, this.buffer32, 0); chunk = this.state; this.state = this.IV.slice(); } this.chunksDone++; this.chunkPos = 0; this.stack.push(chunk); } this.pos = 0; } _cloneInto(to) { to = super._cloneInto(to); const { IV, flags, state, chunkPos, posOut, chunkOut, stack, chunksDone } = this; to.state.set(state.slice()); to.stack = stack.map((i) => Uint32Array.from(i)); to.IV.set(IV); to.flags = flags; to.chunkPos = chunkPos; to.chunksDone = chunksDone; to.posOut = posOut; to.chunkOut = chunkOut; to.enableXOF = this.enableXOF; to.bufferOut32.set(this.bufferOut32); return to; } destroy() { this.destroyed = true; this.state.fill(0); this.buffer32.fill(0); this.IV.fill(0); this.bufferOut32.fill(0); for (let i of this.stack) i.fill(0); } // Same as b2Compress, but doesn't modify state and returns 16 u32 array (instead of 8) b2CompressOut() { const { state: s, pos, flags, buffer32, bufferOut32: out32 } = this; const { h, l } = fromBig(BigInt(this.chunkOut++)); if (!isLE) byteSwap32(buffer32); // prettier-ignore const { v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15 } = compress(SIGMA, 0, buffer32, 7, s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7], B2S_IV[0], B2S_IV[1], B2S_IV[2], B2S_IV[3], l, h, pos, flags); out32[0] = v0 ^ v8; out32[1] = v1 ^ v9; out32[2] = v2 ^ v10; out32[3] = v3 ^ v11; out32[4] = v4 ^ v12; out32[5] = v5 ^ v13; out32[6] = v6 ^ v14; out32[7] = v7 ^ v15; out32[8] = s[0] ^ v8; out32[9] = s[1] ^ v9; out32[10] = s[2] ^ v10; out32[11] = s[3] ^ v11; out32[12] = s[4] ^ v12; out32[13] = s[5] ^ v13; out32[14] = s[6] ^ v14; out32[15] = s[7] ^ v15; if (!isLE) { byteSwap32(buffer32); byteSwap32(out32); } this.posOut = 0; } finish() { if (this.finished) return; this.finished = true; // Padding this.buffer.fill(0, this.pos); // Process last chunk let flags = this.flags | 8 /* B3_Flags.ROOT */; if (this.stack.length) { flags |= 4 /* B3_Flags.PARENT */; if (!isLE) byteSwap32(this.buffer32); this.compress(this.buffer32, 0, true); if (!isLE) byteSwap32(this.buffer32); this.chunksDone = 0; this.pos = this.blockLen; } else { flags |= (!this.chunkPos ? 1 /* B3_Flags.CHUNK_START */ : 0) | 2 /* B3_Flags.CHUNK_END */; } this.flags = flags; this.b2CompressOut(); } writeInto(out) { exists(this, false); bytes(out); this.finish(); const { blockLen, bufferOut } = this; for (let pos = 0, len = out.length; pos < len;) { if (this.posOut >= blockLen) this.b2CompressOut(); const take = Math.min(blockLen - this.posOut, len - pos); out.set(bufferOut.subarray(this.posOut, this.posOut + take), pos); this.posOut += take; pos += take; } return out; } xofInto(out) { if (!this.enableXOF) throw new Error('XOF is not possible after digest call'); return this.writeInto(out); } xof(bytes) { number(bytes); return this.xofInto(new Uint8Array(bytes)); } digestInto(out) { output(out, this); if (this.finished) throw new Error('digest() was already called'); this.enableXOF = false; this.writeInto(out); this.destroy(); return out; } digest() { return this.digestInto(new Uint8Array(this.outputLen)); } } /** * BLAKE3 hash function. * @param msg - message that would be hashed * @param opts - dkLen, key, context */ export const blake3 = /* @__PURE__ */ wrapXOFConstructorWithOpts((opts) => new BLAKE3(opts)); //# sourceMappingURL=blake3.js.map