import { number as assertNumber } from './_assert.js'; import { sha256 } from './sha256.js'; import { pbkdf2 } from './pbkdf2.js'; import { rotl, asyncLoop, checkOpts, u32, isLE, byteSwap32 } from './utils.js'; // RFC 7914 Scrypt KDF // The main Scrypt loop: uses Salsa extensively. // Six versions of the function were tried, this is the fastest one. // prettier-ignore function XorAndSalsa(prev, pi, input, ii, out, oi) { // Based on https://cr.yp.to/salsa20.html // Xor blocks let y00 = prev[pi++] ^ input[ii++], y01 = prev[pi++] ^ input[ii++]; let y02 = prev[pi++] ^ input[ii++], y03 = prev[pi++] ^ input[ii++]; let y04 = prev[pi++] ^ input[ii++], y05 = prev[pi++] ^ input[ii++]; let y06 = prev[pi++] ^ input[ii++], y07 = prev[pi++] ^ input[ii++]; let y08 = prev[pi++] ^ input[ii++], y09 = prev[pi++] ^ input[ii++]; let y10 = prev[pi++] ^ input[ii++], y11 = prev[pi++] ^ input[ii++]; let y12 = prev[pi++] ^ input[ii++], y13 = prev[pi++] ^ input[ii++]; let y14 = prev[pi++] ^ input[ii++], y15 = prev[pi++] ^ input[ii++]; // Save state to temporary variables (salsa) let x00 = y00, x01 = y01, x02 = y02, x03 = y03, x04 = y04, x05 = y05, x06 = y06, x07 = y07, x08 = y08, x09 = y09, x10 = y10, x11 = y11, x12 = y12, x13 = y13, x14 = y14, x15 = y15; // Main loop (salsa) for (let i = 0; i < 8; i += 2) { x04 ^= rotl(x00 + x12 | 0, 7); x08 ^= rotl(x04 + x00 | 0, 9); x12 ^= rotl(x08 + x04 | 0, 13); x00 ^= rotl(x12 + x08 | 0, 18); x09 ^= rotl(x05 + x01 | 0, 7); x13 ^= rotl(x09 + x05 | 0, 9); x01 ^= rotl(x13 + x09 | 0, 13); x05 ^= rotl(x01 + x13 | 0, 18); x14 ^= rotl(x10 + x06 | 0, 7); x02 ^= rotl(x14 + x10 | 0, 9); x06 ^= rotl(x02 + x14 | 0, 13); x10 ^= rotl(x06 + x02 | 0, 18); x03 ^= rotl(x15 + x11 | 0, 7); x07 ^= rotl(x03 + x15 | 0, 9); x11 ^= rotl(x07 + x03 | 0, 13); x15 ^= rotl(x11 + x07 | 0, 18); x01 ^= rotl(x00 + x03 | 0, 7); x02 ^= rotl(x01 + x00 | 0, 9); x03 ^= rotl(x02 + x01 | 0, 13); x00 ^= rotl(x03 + x02 | 0, 18); x06 ^= rotl(x05 + x04 | 0, 7); x07 ^= rotl(x06 + x05 | 0, 9); x04 ^= rotl(x07 + x06 | 0, 13); x05 ^= rotl(x04 + x07 | 0, 18); x11 ^= rotl(x10 + x09 | 0, 7); x08 ^= rotl(x11 + x10 | 0, 9); x09 ^= rotl(x08 + x11 | 0, 13); x10 ^= rotl(x09 + x08 | 0, 18); x12 ^= rotl(x15 + x14 | 0, 7); x13 ^= rotl(x12 + x15 | 0, 9); x14 ^= rotl(x13 + x12 | 0, 13); x15 ^= rotl(x14 + x13 | 0, 18); } // Write output (salsa) out[oi++] = (y00 + x00) | 0; out[oi++] = (y01 + x01) | 0; out[oi++] = (y02 + x02) | 0; out[oi++] = (y03 + x03) | 0; out[oi++] = (y04 + x04) | 0; out[oi++] = (y05 + x05) | 0; out[oi++] = (y06 + x06) | 0; out[oi++] = (y07 + x07) | 0; out[oi++] = (y08 + x08) | 0; out[oi++] = (y09 + x09) | 0; out[oi++] = (y10 + x10) | 0; out[oi++] = (y11 + x11) | 0; out[oi++] = (y12 + x12) | 0; out[oi++] = (y13 + x13) | 0; out[oi++] = (y14 + x14) | 0; out[oi++] = (y15 + x15) | 0; } function BlockMix(input, ii, out, oi, r) { // The block B is r 128-byte chunks (which is equivalent of 2r 64-byte chunks) let head = oi + 0; let tail = oi + 16 * r; for (let i = 0; i < 16; i++) out[tail + i] = input[ii + (2 * r - 1) * 16 + i]; // X ← B[2r−1] for (let i = 0; i < r; i++, head += 16, ii += 16) { // We write odd & even Yi at same time. Even: 0bXXXXX0 Odd: 0bXXXXX1 XorAndSalsa(out, tail, input, ii, out, head); // head[i] = Salsa(blockIn[2*i] ^ tail[i-1]) if (i > 0) tail += 16; // First iteration overwrites tmp value in tail XorAndSalsa(out, head, input, (ii += 16), out, tail); // tail[i] = Salsa(blockIn[2*i+1] ^ head[i]) } } // Common prologue and epilogue for sync/async functions function scryptInit(password, salt, _opts) { // Maxmem - 1GB+1KB by default const opts = checkOpts({ dkLen: 32, asyncTick: 10, maxmem: 1024 ** 3 + 1024, }, _opts); const { N, r, p, dkLen, asyncTick, maxmem, onProgress } = opts; assertNumber(N); assertNumber(r); assertNumber(p); assertNumber(dkLen); assertNumber(asyncTick); assertNumber(maxmem); if (onProgress !== undefined && typeof onProgress !== 'function') throw new Error('progressCb should be function'); const blockSize = 128 * r; const blockSize32 = blockSize / 4; if (N <= 1 || (N & (N - 1)) !== 0 || N >= 2 ** (blockSize / 8) || N > 2 ** 32) { // NOTE: we limit N to be less than 2**32 because of 32 bit variant of Integrify function // There is no JS engines that allows alocate more than 4GB per single Uint8Array for now, but can change in future. throw new Error('Scrypt: N must be larger than 1, a power of 2, less than 2^(128 * r / 8) and less than 2^32'); } if (p < 0 || p > ((2 ** 32 - 1) * 32) / blockSize) { throw new Error('Scrypt: p must be a positive integer less than or equal to ((2^32 - 1) * 32) / (128 * r)'); } if (dkLen < 0 || dkLen > (2 ** 32 - 1) * 32) { throw new Error('Scrypt: dkLen should be positive integer less than or equal to (2^32 - 1) * 32'); } const memUsed = blockSize * (N + p); if (memUsed > maxmem) { throw new Error(`Scrypt: parameters too large, ${memUsed} (128 * r * (N + p)) > ${maxmem} (maxmem)`); } // [B0...Bp−1] ← PBKDF2HMAC-SHA256(Passphrase, Salt, 1, blockSize*ParallelizationFactor) // Since it has only one iteration there is no reason to use async variant const B = pbkdf2(sha256, password, salt, { c: 1, dkLen: blockSize * p }); const B32 = u32(B); // Re-used between parallel iterations. Array(iterations) of B const V = u32(new Uint8Array(blockSize * N)); const tmp = u32(new Uint8Array(blockSize)); let blockMixCb = () => { }; if (onProgress) { const totalBlockMix = 2 * N * p; // Invoke callback if progress changes from 10.01 to 10.02 // Allows to draw smooth progress bar on up to 8K screen const callbackPer = Math.max(Math.floor(totalBlockMix / 10000), 1); let blockMixCnt = 0; blockMixCb = () => { blockMixCnt++; if (onProgress && (!(blockMixCnt % callbackPer) || blockMixCnt === totalBlockMix)) onProgress(blockMixCnt / totalBlockMix); }; } return { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick }; } function scryptOutput(password, dkLen, B, V, tmp) { const res = pbkdf2(sha256, password, B, { c: 1, dkLen }); B.fill(0); V.fill(0); tmp.fill(0); return res; } /** * Scrypt KDF from RFC 7914. * @param password - pass * @param salt - salt * @param opts - parameters * - `N` is cpu/mem work factor (power of 2 e.g. 2**18) * - `r` is block size (8 is common), fine-tunes sequential memory read size and performance * - `p` is parallelization factor (1 is common) * - `dkLen` is output key length in bytes e.g. 32. * - `asyncTick` - (default: 10) max time in ms for which async function can block execution * - `maxmem` - (default: `1024 ** 3 + 1024` aka 1GB+1KB). A limit that the app could use for scrypt * - `onProgress` - callback function that would be executed for progress report * @returns Derived key */ export function scrypt(password, salt, opts) { const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb } = scryptInit(password, salt, opts); if (!isLE) byteSwap32(B32); for (let pi = 0; pi < p; pi++) { const Pi = blockSize32 * pi; for (let i = 0; i < blockSize32; i++) V[i] = B32[Pi + i]; // V[0] = B[i] for (let i = 0, pos = 0; i < N - 1; i++) { BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]); blockMixCb(); } BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element blockMixCb(); for (let i = 0; i < N; i++) { // First u32 of the last 64-byte block (u32 is LE) const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations for (let k = 0; k < blockSize32; k++) tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j] BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j]) blockMixCb(); } } if (!isLE) byteSwap32(B32); return scryptOutput(password, dkLen, B, V, tmp); } /** * Scrypt KDF from RFC 7914. */ export async function scryptAsync(password, salt, opts) { const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick } = scryptInit(password, salt, opts); if (!isLE) byteSwap32(B32); for (let pi = 0; pi < p; pi++) { const Pi = blockSize32 * pi; for (let i = 0; i < blockSize32; i++) V[i] = B32[Pi + i]; // V[0] = B[i] let pos = 0; await asyncLoop(N - 1, asyncTick, () => { BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]); blockMixCb(); }); BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element blockMixCb(); await asyncLoop(N, asyncTick, () => { // First u32 of the last 64-byte block (u32 is LE) const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations for (let k = 0; k < blockSize32; k++) tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j] BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j]) blockMixCb(); }); } if (!isLE) byteSwap32(B32); return scryptOutput(password, dkLen, B, V, tmp); } //# sourceMappingURL=scrypt.js.map