/*! firebase-admin v12.1.1 */ "use strict"; /*! * Copyright 2020 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ Object.defineProperty(exports, "__esModule", { value: true }); exports.Model = exports.MachineLearning = void 0; const index_1 = require("../storage/index"); const error_1 = require("../utils/error"); const validator = require("../utils/validator"); const deep_copy_1 = require("../utils/deep-copy"); const utils = require("../utils"); const machine_learning_api_client_1 = require("./machine-learning-api-client"); const machine_learning_utils_1 = require("./machine-learning-utils"); /** * The Firebase `MachineLearning` service interface. */ class MachineLearning { /** * @param app - The app for this ML service. * @constructor * @internal */ constructor(app) { if (!validator.isNonNullObject(app) || !('options' in app)) { throw new error_1.FirebaseError({ code: 'machine-learning/invalid-argument', message: 'First argument passed to admin.machineLearning() must be a ' + 'valid Firebase app instance.', }); } this.appInternal = app; this.client = new machine_learning_api_client_1.MachineLearningApiClient(app); } /** * The {@link firebase-admin.app#App} associated with the current `MachineLearning` * service instance. */ get app() { return this.appInternal; } /** * Creates a model in the current Firebase project. * * @param model - The model to create. * * @returns A Promise fulfilled with the created model. */ createModel(model) { return this.signUrlIfPresent(model) .then((modelContent) => this.client.createModel(modelContent)) .then((operation) => this.client.handleOperation(operation)) .then((modelResponse) => new Model(modelResponse, this.client)); } /** * Updates a model's metadata or model file. * * @param modelId - The ID of the model to update. * @param model - The model fields to update. * * @returns A Promise fulfilled with the updated model. */ updateModel(modelId, model) { const updateMask = utils.generateUpdateMask(model); return this.signUrlIfPresent(model) .then((modelContent) => this.client.updateModel(modelId, modelContent, updateMask)) .then((operation) => this.client.handleOperation(operation)) .then((modelResponse) => new Model(modelResponse, this.client)); } /** * Publishes a Firebase ML model. * * A published model can be downloaded to client apps. * * @param modelId - The ID of the model to publish. * * @returns A Promise fulfilled with the published model. */ publishModel(modelId) { return this.setPublishStatus(modelId, true); } /** * Unpublishes a Firebase ML model. * * @param modelId - The ID of the model to unpublish. * * @returns A Promise fulfilled with the unpublished model. */ unpublishModel(modelId) { return this.setPublishStatus(modelId, false); } /** * Gets the model specified by the given ID. * * @param modelId - The ID of the model to get. * * @returns A Promise fulfilled with the model object. */ getModel(modelId) { return this.client.getModel(modelId) .then((modelResponse) => new Model(modelResponse, this.client)); } /** * Lists the current project's models. * * @param options - The listing options. * * @returns A promise that * resolves with the current (filtered) list of models and the next page * token. For the last page, an empty list of models and no page token * are returned. */ listModels(options = {}) { return this.client.listModels(options) .then((resp) => { if (!validator.isNonNullObject(resp)) { throw new machine_learning_utils_1.FirebaseMachineLearningError('invalid-argument', `Invalid ListModels response: ${JSON.stringify(resp)}`); } let models = []; if (resp.models) { models = resp.models.map((rs) => new Model(rs, this.client)); } const result = { models }; if (resp.nextPageToken) { result.pageToken = resp.nextPageToken; } return result; }); } /** * Deletes a model from the current project. * * @param modelId - The ID of the model to delete. */ deleteModel(modelId) { return this.client.deleteModel(modelId); } setPublishStatus(modelId, publish) { const updateMask = ['state.published']; const options = { state: { published: publish } }; return this.client.updateModel(modelId, options, updateMask) .then((operation) => this.client.handleOperation(operation)) .then((modelResponse) => new Model(modelResponse, this.client)); } signUrlIfPresent(options) { const modelOptions = (0, deep_copy_1.deepCopy)(options); if ((0, machine_learning_api_client_1.isGcsTfliteModelOptions)(modelOptions)) { return this.signUrl(modelOptions.tfliteModel.gcsTfliteUri) .then((uri) => { modelOptions.tfliteModel.gcsTfliteUri = uri; return modelOptions; }) .catch((err) => { throw new machine_learning_utils_1.FirebaseMachineLearningError('internal-error', `Error during signing upload url: ${err.message}`); }); } return Promise.resolve(modelOptions); } signUrl(unsignedUrl) { const MINUTES_IN_MILLIS = 60 * 1000; const URL_VALID_DURATION = 10 * MINUTES_IN_MILLIS; const gcsRegex = /^gs:\/\/([a-z0-9_.-]{3,63})\/(.+)$/; const matches = gcsRegex.exec(unsignedUrl); if (!matches) { throw new machine_learning_utils_1.FirebaseMachineLearningError('invalid-argument', `Invalid unsigned url: ${unsignedUrl}`); } const bucketName = matches[1]; const blobName = matches[2]; const bucket = (0, index_1.getStorage)(this.app).bucket(bucketName); const blob = bucket.file(blobName); return blob.getSignedUrl({ action: 'read', expires: Date.now() + URL_VALID_DURATION, }).then((signUrl) => signUrl[0]); } } exports.MachineLearning = MachineLearning; /** * A Firebase ML Model output object. */ class Model { /** * @internal */ constructor(model, client) { this.model = Model.validateAndClone(model); this.client = client; } /** The ID of the model. */ get modelId() { return extractModelId(this.model.name); } /** * The model's name. This is the name you use from your app to load the * model. */ get displayName() { return this.model.displayName; } /** * The model's tags, which can be used to group or filter models in list * operations. */ get tags() { return this.model.tags || []; } /** The timestamp of the model's creation. */ get createTime() { return new Date(this.model.createTime).toUTCString(); } /** The timestamp of the model's most recent update. */ get updateTime() { return new Date(this.model.updateTime).toUTCString(); } /** Error message when model validation fails. */ get validationError() { return this.model.state?.validationError?.message; } /** True if the model is published. */ get published() { return this.model.state?.published || false; } /** * The ETag identifier of the current version of the model. This value * changes whenever you update any of the model's properties. */ get etag() { return this.model.etag; } /** * The hash of the model's `tflite` file. This value changes only when * you upload a new TensorFlow Lite model. */ get modelHash() { return this.model.modelHash; } /** Metadata about the model's TensorFlow Lite model file. */ get tfliteModel() { // Make a copy so people can't directly modify the private this.model object. return (0, deep_copy_1.deepCopy)(this.model.tfliteModel); } /** * True if the model is locked by a server-side operation. You can't make * changes to a locked model. See {@link Model.waitForUnlocked}. */ get locked() { return (this.model.activeOperations?.length ?? 0) > 0; } /** * Return the model as a JSON object. */ toJSON() { // We can't just return this.model because it has extra fields and // different formats etc. So we build the expected model object. const jsonModel = { modelId: this.modelId, displayName: this.displayName, tags: this.tags, createTime: this.createTime, updateTime: this.updateTime, published: this.published, etag: this.etag, locked: this.locked, }; // Also add possibly undefined fields if they exist. if (this.validationError) { jsonModel['validationError'] = this.validationError; } if (this.modelHash) { jsonModel['modelHash'] = this.modelHash; } if (this.tfliteModel) { jsonModel['tfliteModel'] = this.tfliteModel; } return jsonModel; } /** * Wait for the model to be unlocked. * * @param maxTimeMillis - The maximum time in milliseconds to wait. * If not specified, a default maximum of 2 minutes is used. * * @returns A promise that resolves when the model is unlocked * or the maximum wait time has passed. */ waitForUnlocked(maxTimeMillis) { if ((this.model.activeOperations?.length ?? 0) > 0) { // The client will always be defined on Models that have activeOperations // because models with active operations came back from the server and // were constructed with a non-empty client. return this.client.handleOperation(this.model.activeOperations[0], { wait: true, maxTimeMillis }) .then((modelResponse) => { this.model = Model.validateAndClone(modelResponse); }); } return Promise.resolve(); } static validateAndClone(model) { if (!validator.isNonNullObject(model) || !validator.isNonEmptyString(model.name) || !validator.isNonEmptyString(model.createTime) || !validator.isNonEmptyString(model.updateTime) || !validator.isNonEmptyString(model.displayName) || !validator.isNonEmptyString(model.etag)) { throw new machine_learning_utils_1.FirebaseMachineLearningError('invalid-server-response', `Invalid Model response: ${JSON.stringify(model)}`); } const tmpModel = (0, deep_copy_1.deepCopy)(model); // If tflite Model is specified, it must have a source of {gcsTfliteUri} if (model.tfliteModel && !validator.isNonEmptyString(model.tfliteModel.gcsTfliteUri)) { // If we have some other source, ignore the whole tfliteModel. delete tmpModel.tfliteModel; } // Remove '@type' field. We don't need it. if (tmpModel['@type']) { delete tmpModel['@type']; } return tmpModel; } } exports.Model = Model; function extractModelId(resourceName) { return resourceName.split('/').pop(); }