123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- /*!
- * lunr.Builder
- * Copyright (C) @YEAR Oliver Nightingale
- */
- /**
- * lunr.Builder performs indexing on a set of documents and
- * returns instances of lunr.Index ready for querying.
- *
- * All configuration of the index is done via the builder, the
- * fields to index, the document reference, the text processing
- * pipeline and document scoring parameters are all set on the
- * builder before indexing.
- *
- * @constructor
- * @property {string} _ref - Internal reference to the document reference field.
- * @property {string[]} _fields - Internal reference to the document fields to index.
- * @property {object} invertedIndex - The inverted index maps terms to document fields.
- * @property {object} documentTermFrequencies - Keeps track of document term frequencies.
- * @property {object} documentLengths - Keeps track of the length of documents added to the index.
- * @property {lunr.tokenizer} tokenizer - Function for splitting strings into tokens for indexing.
- * @property {lunr.Pipeline} pipeline - The pipeline performs text processing on tokens before indexing.
- * @property {lunr.Pipeline} searchPipeline - A pipeline for processing search terms before querying the index.
- * @property {number} documentCount - Keeps track of the total number of documents indexed.
- * @property {number} _b - A parameter to control field length normalization, setting this to 0 disabled normalization, 1 fully normalizes field lengths, the default value is 0.75.
- * @property {number} _k1 - A parameter to control how quickly an increase in term frequency results in term frequency saturation, the default value is 1.2.
- * @property {number} termIndex - A counter incremented for each unique term, used to identify a terms position in the vector space.
- * @property {array} metadataWhitelist - A list of metadata keys that have been whitelisted for entry in the index.
- */
- lunr.Builder = function () {
- this._ref = "id"
- this._fields = Object.create(null)
- this._documents = Object.create(null)
- this.invertedIndex = Object.create(null)
- this.fieldTermFrequencies = {}
- this.fieldLengths = {}
- this.tokenizer = lunr.tokenizer
- this.pipeline = new lunr.Pipeline
- this.searchPipeline = new lunr.Pipeline
- this.documentCount = 0
- this._b = 0.75
- this._k1 = 1.2
- this.termIndex = 0
- this.metadataWhitelist = []
- }
- /**
- * Sets the document field used as the document reference. Every document must have this field.
- * The type of this field in the document should be a string, if it is not a string it will be
- * coerced into a string by calling toString.
- *
- * The default ref is 'id'.
- *
- * The ref should _not_ be changed during indexing, it should be set before any documents are
- * added to the index. Changing it during indexing can lead to inconsistent results.
- *
- * @param {string} ref - The name of the reference field in the document.
- */
- lunr.Builder.prototype.ref = function (ref) {
- this._ref = ref
- }
- /**
- * A function that is used to extract a field from a document.
- *
- * Lunr expects a field to be at the top level of a document, if however the field
- * is deeply nested within a document an extractor function can be used to extract
- * the right field for indexing.
- *
- * @callback fieldExtractor
- * @param {object} doc - The document being added to the index.
- * @returns {?(string|object|object[])} obj - The object that will be indexed for this field.
- * @example <caption>Extracting a nested field</caption>
- * function (doc) { return doc.nested.field }
- */
- /**
- * Adds a field to the list of document fields that will be indexed. Every document being
- * indexed should have this field. Null values for this field in indexed documents will
- * not cause errors but will limit the chance of that document being retrieved by searches.
- *
- * All fields should be added before adding documents to the index. Adding fields after
- * a document has been indexed will have no effect on already indexed documents.
- *
- * Fields can be boosted at build time. This allows terms within that field to have more
- * importance when ranking search results. Use a field boost to specify that matches within
- * one field are more important than other fields.
- *
- * @param {string} fieldName - The name of a field to index in all documents.
- * @param {object} attributes - Optional attributes associated with this field.
- * @param {number} [attributes.boost=1] - Boost applied to all terms within this field.
- * @param {fieldExtractor} [attributes.extractor] - Function to extract a field from a document.
- * @throws {RangeError} fieldName cannot contain unsupported characters '/'
- */
- lunr.Builder.prototype.field = function (fieldName, attributes) {
- if (/\//.test(fieldName)) {
- throw new RangeError ("Field '" + fieldName + "' contains illegal character '/'")
- }
- this._fields[fieldName] = attributes || {}
- }
- /**
- * A parameter to tune the amount of field length normalisation that is applied when
- * calculating relevance scores. A value of 0 will completely disable any normalisation
- * and a value of 1 will fully normalise field lengths. The default is 0.75. Values of b
- * will be clamped to the range 0 - 1.
- *
- * @param {number} number - The value to set for this tuning parameter.
- */
- lunr.Builder.prototype.b = function (number) {
- if (number < 0) {
- this._b = 0
- } else if (number > 1) {
- this._b = 1
- } else {
- this._b = number
- }
- }
- /**
- * A parameter that controls the speed at which a rise in term frequency results in term
- * frequency saturation. The default value is 1.2. Setting this to a higher value will give
- * slower saturation levels, a lower value will result in quicker saturation.
- *
- * @param {number} number - The value to set for this tuning parameter.
- */
- lunr.Builder.prototype.k1 = function (number) {
- this._k1 = number
- }
- /**
- * Adds a document to the index.
- *
- * Before adding fields to the index the index should have been fully setup, with the document
- * ref and all fields to index already having been specified.
- *
- * The document must have a field name as specified by the ref (by default this is 'id') and
- * it should have all fields defined for indexing, though null or undefined values will not
- * cause errors.
- *
- * Entire documents can be boosted at build time. Applying a boost to a document indicates that
- * this document should rank higher in search results than other documents.
- *
- * @param {object} doc - The document to add to the index.
- * @param {object} attributes - Optional attributes associated with this document.
- * @param {number} [attributes.boost=1] - Boost applied to all terms within this document.
- */
- lunr.Builder.prototype.add = function (doc, attributes) {
- var docRef = doc[this._ref],
- fields = Object.keys(this._fields)
- this._documents[docRef] = attributes || {}
- this.documentCount += 1
- for (var i = 0; i < fields.length; i++) {
- var fieldName = fields[i],
- extractor = this._fields[fieldName].extractor,
- field = extractor ? extractor(doc) : doc[fieldName],
- tokens = this.tokenizer(field, {
- fields: [fieldName]
- }),
- terms = this.pipeline.run(tokens),
- fieldRef = new lunr.FieldRef (docRef, fieldName),
- fieldTerms = Object.create(null)
- this.fieldTermFrequencies[fieldRef] = fieldTerms
- this.fieldLengths[fieldRef] = 0
- // store the length of this field for this document
- this.fieldLengths[fieldRef] += terms.length
- // calculate term frequencies for this field
- for (var j = 0; j < terms.length; j++) {
- var term = terms[j]
- if (fieldTerms[term] == undefined) {
- fieldTerms[term] = 0
- }
- fieldTerms[term] += 1
- // add to inverted index
- // create an initial posting if one doesn't exist
- if (this.invertedIndex[term] == undefined) {
- var posting = Object.create(null)
- posting["_index"] = this.termIndex
- this.termIndex += 1
- for (var k = 0; k < fields.length; k++) {
- posting[fields[k]] = Object.create(null)
- }
- this.invertedIndex[term] = posting
- }
- // add an entry for this term/fieldName/docRef to the invertedIndex
- if (this.invertedIndex[term][fieldName][docRef] == undefined) {
- this.invertedIndex[term][fieldName][docRef] = Object.create(null)
- }
- // store all whitelisted metadata about this token in the
- // inverted index
- for (var l = 0; l < this.metadataWhitelist.length; l++) {
- var metadataKey = this.metadataWhitelist[l],
- metadata = term.metadata[metadataKey]
- if (this.invertedIndex[term][fieldName][docRef][metadataKey] == undefined) {
- this.invertedIndex[term][fieldName][docRef][metadataKey] = []
- }
- this.invertedIndex[term][fieldName][docRef][metadataKey].push(metadata)
- }
- }
- }
- }
- /**
- * Calculates the average document length for this index
- *
- * @private
- */
- lunr.Builder.prototype.calculateAverageFieldLengths = function () {
- var fieldRefs = Object.keys(this.fieldLengths),
- numberOfFields = fieldRefs.length,
- accumulator = {},
- documentsWithField = {}
- for (var i = 0; i < numberOfFields; i++) {
- var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]),
- field = fieldRef.fieldName
- documentsWithField[field] || (documentsWithField[field] = 0)
- documentsWithField[field] += 1
- accumulator[field] || (accumulator[field] = 0)
- accumulator[field] += this.fieldLengths[fieldRef]
- }
- var fields = Object.keys(this._fields)
- for (var i = 0; i < fields.length; i++) {
- var fieldName = fields[i]
- accumulator[fieldName] = accumulator[fieldName] / documentsWithField[fieldName]
- }
- this.averageFieldLength = accumulator
- }
- /**
- * Builds a vector space model of every document using lunr.Vector
- *
- * @private
- */
- lunr.Builder.prototype.createFieldVectors = function () {
- var fieldVectors = {},
- fieldRefs = Object.keys(this.fieldTermFrequencies),
- fieldRefsLength = fieldRefs.length,
- termIdfCache = Object.create(null)
- for (var i = 0; i < fieldRefsLength; i++) {
- var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]),
- fieldName = fieldRef.fieldName,
- fieldLength = this.fieldLengths[fieldRef],
- fieldVector = new lunr.Vector,
- termFrequencies = this.fieldTermFrequencies[fieldRef],
- terms = Object.keys(termFrequencies),
- termsLength = terms.length
- var fieldBoost = this._fields[fieldName].boost || 1,
- docBoost = this._documents[fieldRef.docRef].boost || 1
- for (var j = 0; j < termsLength; j++) {
- var term = terms[j],
- tf = termFrequencies[term],
- termIndex = this.invertedIndex[term]._index,
- idf, score, scoreWithPrecision
- if (termIdfCache[term] === undefined) {
- idf = lunr.idf(this.invertedIndex[term], this.documentCount)
- termIdfCache[term] = idf
- } else {
- idf = termIdfCache[term]
- }
- score = idf * ((this._k1 + 1) * tf) / (this._k1 * (1 - this._b + this._b * (fieldLength / this.averageFieldLength[fieldName])) + tf)
- score *= fieldBoost
- score *= docBoost
- scoreWithPrecision = Math.round(score * 1000) / 1000
- // Converts 1.23456789 to 1.234.
- // Reducing the precision so that the vectors take up less
- // space when serialised. Doing it now so that they behave
- // the same before and after serialisation. Also, this is
- // the fastest approach to reducing a number's precision in
- // JavaScript.
- fieldVector.insert(termIndex, scoreWithPrecision)
- }
- fieldVectors[fieldRef] = fieldVector
- }
- this.fieldVectors = fieldVectors
- }
- /**
- * Creates a token set of all tokens in the index using lunr.TokenSet
- *
- * @private
- */
- lunr.Builder.prototype.createTokenSet = function () {
- this.tokenSet = lunr.TokenSet.fromArray(
- Object.keys(this.invertedIndex).sort()
- )
- }
- /**
- * Builds the index, creating an instance of lunr.Index.
- *
- * This completes the indexing process and should only be called
- * once all documents have been added to the index.
- *
- * @returns {lunr.Index}
- */
- lunr.Builder.prototype.build = function () {
- this.calculateAverageFieldLengths()
- this.createFieldVectors()
- this.createTokenSet()
- return new lunr.Index({
- invertedIndex: this.invertedIndex,
- fieldVectors: this.fieldVectors,
- tokenSet: this.tokenSet,
- fields: Object.keys(this._fields),
- pipeline: this.searchPipeline
- })
- }
- /**
- * Applies a plugin to the index builder.
- *
- * A plugin is a function that is called with the index builder as its context.
- * Plugins can be used to customise or extend the behaviour of the index
- * in some way. A plugin is just a function, that encapsulated the custom
- * behaviour that should be applied when building the index.
- *
- * The plugin function will be called with the index builder as its argument, additional
- * arguments can also be passed when calling use. The function will be called
- * with the index builder as its context.
- *
- * @param {Function} plugin The plugin to apply.
- */
- lunr.Builder.prototype.use = function (fn) {
- var args = Array.prototype.slice.call(arguments, 1)
- args.unshift(this)
- fn.apply(this, args)
- }
|