123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import { number as assertNumber } from './_assert.js';
- import { sha256 } from './sha256.js';
- import { pbkdf2 } from './pbkdf2.js';
- import { rotl, asyncLoop, checkOpts, u32, isLE, byteSwap32 } from './utils.js';
- // RFC 7914 Scrypt KDF
- // The main Scrypt loop: uses Salsa extensively.
- // Six versions of the function were tried, this is the fastest one.
- // prettier-ignore
- function XorAndSalsa(prev, pi, input, ii, out, oi) {
- // Based on https://cr.yp.to/salsa20.html
- // Xor blocks
- let y00 = prev[pi++] ^ input[ii++], y01 = prev[pi++] ^ input[ii++];
- let y02 = prev[pi++] ^ input[ii++], y03 = prev[pi++] ^ input[ii++];
- let y04 = prev[pi++] ^ input[ii++], y05 = prev[pi++] ^ input[ii++];
- let y06 = prev[pi++] ^ input[ii++], y07 = prev[pi++] ^ input[ii++];
- let y08 = prev[pi++] ^ input[ii++], y09 = prev[pi++] ^ input[ii++];
- let y10 = prev[pi++] ^ input[ii++], y11 = prev[pi++] ^ input[ii++];
- let y12 = prev[pi++] ^ input[ii++], y13 = prev[pi++] ^ input[ii++];
- let y14 = prev[pi++] ^ input[ii++], y15 = prev[pi++] ^ input[ii++];
- // Save state to temporary variables (salsa)
- let x00 = y00, x01 = y01, x02 = y02, x03 = y03, x04 = y04, x05 = y05, x06 = y06, x07 = y07, x08 = y08, x09 = y09, x10 = y10, x11 = y11, x12 = y12, x13 = y13, x14 = y14, x15 = y15;
- // Main loop (salsa)
- for (let i = 0; i < 8; i += 2) {
- x04 ^= rotl(x00 + x12 | 0, 7);
- x08 ^= rotl(x04 + x00 | 0, 9);
- x12 ^= rotl(x08 + x04 | 0, 13);
- x00 ^= rotl(x12 + x08 | 0, 18);
- x09 ^= rotl(x05 + x01 | 0, 7);
- x13 ^= rotl(x09 + x05 | 0, 9);
- x01 ^= rotl(x13 + x09 | 0, 13);
- x05 ^= rotl(x01 + x13 | 0, 18);
- x14 ^= rotl(x10 + x06 | 0, 7);
- x02 ^= rotl(x14 + x10 | 0, 9);
- x06 ^= rotl(x02 + x14 | 0, 13);
- x10 ^= rotl(x06 + x02 | 0, 18);
- x03 ^= rotl(x15 + x11 | 0, 7);
- x07 ^= rotl(x03 + x15 | 0, 9);
- x11 ^= rotl(x07 + x03 | 0, 13);
- x15 ^= rotl(x11 + x07 | 0, 18);
- x01 ^= rotl(x00 + x03 | 0, 7);
- x02 ^= rotl(x01 + x00 | 0, 9);
- x03 ^= rotl(x02 + x01 | 0, 13);
- x00 ^= rotl(x03 + x02 | 0, 18);
- x06 ^= rotl(x05 + x04 | 0, 7);
- x07 ^= rotl(x06 + x05 | 0, 9);
- x04 ^= rotl(x07 + x06 | 0, 13);
- x05 ^= rotl(x04 + x07 | 0, 18);
- x11 ^= rotl(x10 + x09 | 0, 7);
- x08 ^= rotl(x11 + x10 | 0, 9);
- x09 ^= rotl(x08 + x11 | 0, 13);
- x10 ^= rotl(x09 + x08 | 0, 18);
- x12 ^= rotl(x15 + x14 | 0, 7);
- x13 ^= rotl(x12 + x15 | 0, 9);
- x14 ^= rotl(x13 + x12 | 0, 13);
- x15 ^= rotl(x14 + x13 | 0, 18);
- }
- // Write output (salsa)
- out[oi++] = (y00 + x00) | 0;
- out[oi++] = (y01 + x01) | 0;
- out[oi++] = (y02 + x02) | 0;
- out[oi++] = (y03 + x03) | 0;
- out[oi++] = (y04 + x04) | 0;
- out[oi++] = (y05 + x05) | 0;
- out[oi++] = (y06 + x06) | 0;
- out[oi++] = (y07 + x07) | 0;
- out[oi++] = (y08 + x08) | 0;
- out[oi++] = (y09 + x09) | 0;
- out[oi++] = (y10 + x10) | 0;
- out[oi++] = (y11 + x11) | 0;
- out[oi++] = (y12 + x12) | 0;
- out[oi++] = (y13 + x13) | 0;
- out[oi++] = (y14 + x14) | 0;
- out[oi++] = (y15 + x15) | 0;
- }
- function BlockMix(input, ii, out, oi, r) {
- // The block B is r 128-byte chunks (which is equivalent of 2r 64-byte chunks)
- let head = oi + 0;
- let tail = oi + 16 * r;
- for (let i = 0; i < 16; i++)
- out[tail + i] = input[ii + (2 * r - 1) * 16 + i]; // X ← B[2r−1]
- for (let i = 0; i < r; i++, head += 16, ii += 16) {
- // We write odd & even Yi at same time. Even: 0bXXXXX0 Odd: 0bXXXXX1
- XorAndSalsa(out, tail, input, ii, out, head); // head[i] = Salsa(blockIn[2*i] ^ tail[i-1])
- if (i > 0)
- tail += 16; // First iteration overwrites tmp value in tail
- XorAndSalsa(out, head, input, (ii += 16), out, tail); // tail[i] = Salsa(blockIn[2*i+1] ^ head[i])
- }
- }
- // Common prologue and epilogue for sync/async functions
- function scryptInit(password, salt, _opts) {
- // Maxmem - 1GB+1KB by default
- const opts = checkOpts({
- dkLen: 32,
- asyncTick: 10,
- maxmem: 1024 ** 3 + 1024,
- }, _opts);
- const { N, r, p, dkLen, asyncTick, maxmem, onProgress } = opts;
- assertNumber(N);
- assertNumber(r);
- assertNumber(p);
- assertNumber(dkLen);
- assertNumber(asyncTick);
- assertNumber(maxmem);
- if (onProgress !== undefined && typeof onProgress !== 'function')
- throw new Error('progressCb should be function');
- const blockSize = 128 * r;
- const blockSize32 = blockSize / 4;
- if (N <= 1 || (N & (N - 1)) !== 0 || N >= 2 ** (blockSize / 8) || N > 2 ** 32) {
- // NOTE: we limit N to be less than 2**32 because of 32 bit variant of Integrify function
- // There is no JS engines that allows alocate more than 4GB per single Uint8Array for now, but can change in future.
- throw new Error('Scrypt: N must be larger than 1, a power of 2, less than 2^(128 * r / 8) and less than 2^32');
- }
- if (p < 0 || p > ((2 ** 32 - 1) * 32) / blockSize) {
- throw new Error('Scrypt: p must be a positive integer less than or equal to ((2^32 - 1) * 32) / (128 * r)');
- }
- if (dkLen < 0 || dkLen > (2 ** 32 - 1) * 32) {
- throw new Error('Scrypt: dkLen should be positive integer less than or equal to (2^32 - 1) * 32');
- }
- const memUsed = blockSize * (N + p);
- if (memUsed > maxmem) {
- throw new Error(`Scrypt: parameters too large, ${memUsed} (128 * r * (N + p)) > ${maxmem} (maxmem)`);
- }
- // [B0...Bp−1] ← PBKDF2HMAC-SHA256(Passphrase, Salt, 1, blockSize*ParallelizationFactor)
- // Since it has only one iteration there is no reason to use async variant
- const B = pbkdf2(sha256, password, salt, { c: 1, dkLen: blockSize * p });
- const B32 = u32(B);
- // Re-used between parallel iterations. Array(iterations) of B
- const V = u32(new Uint8Array(blockSize * N));
- const tmp = u32(new Uint8Array(blockSize));
- let blockMixCb = () => { };
- if (onProgress) {
- const totalBlockMix = 2 * N * p;
- // Invoke callback if progress changes from 10.01 to 10.02
- // Allows to draw smooth progress bar on up to 8K screen
- const callbackPer = Math.max(Math.floor(totalBlockMix / 10000), 1);
- let blockMixCnt = 0;
- blockMixCb = () => {
- blockMixCnt++;
- if (onProgress && (!(blockMixCnt % callbackPer) || blockMixCnt === totalBlockMix))
- onProgress(blockMixCnt / totalBlockMix);
- };
- }
- return { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick };
- }
- function scryptOutput(password, dkLen, B, V, tmp) {
- const res = pbkdf2(sha256, password, B, { c: 1, dkLen });
- B.fill(0);
- V.fill(0);
- tmp.fill(0);
- return res;
- }
- /**
- * Scrypt KDF from RFC 7914.
- * @param password - pass
- * @param salt - salt
- * @param opts - parameters
- * - `N` is cpu/mem work factor (power of 2 e.g. 2**18)
- * - `r` is block size (8 is common), fine-tunes sequential memory read size and performance
- * - `p` is parallelization factor (1 is common)
- * - `dkLen` is output key length in bytes e.g. 32.
- * - `asyncTick` - (default: 10) max time in ms for which async function can block execution
- * - `maxmem` - (default: `1024 ** 3 + 1024` aka 1GB+1KB). A limit that the app could use for scrypt
- * - `onProgress` - callback function that would be executed for progress report
- * @returns Derived key
- */
- export function scrypt(password, salt, opts) {
- const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb } = scryptInit(password, salt, opts);
- if (!isLE)
- byteSwap32(B32);
- for (let pi = 0; pi < p; pi++) {
- const Pi = blockSize32 * pi;
- for (let i = 0; i < blockSize32; i++)
- V[i] = B32[Pi + i]; // V[0] = B[i]
- for (let i = 0, pos = 0; i < N - 1; i++) {
- BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
- blockMixCb();
- }
- BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
- blockMixCb();
- for (let i = 0; i < N; i++) {
- // First u32 of the last 64-byte block (u32 is LE)
- const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
- for (let k = 0; k < blockSize32; k++)
- tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
- BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
- blockMixCb();
- }
- }
- if (!isLE)
- byteSwap32(B32);
- return scryptOutput(password, dkLen, B, V, tmp);
- }
- /**
- * Scrypt KDF from RFC 7914.
- */
- export async function scryptAsync(password, salt, opts) {
- const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick } = scryptInit(password, salt, opts);
- if (!isLE)
- byteSwap32(B32);
- for (let pi = 0; pi < p; pi++) {
- const Pi = blockSize32 * pi;
- for (let i = 0; i < blockSize32; i++)
- V[i] = B32[Pi + i]; // V[0] = B[i]
- let pos = 0;
- await asyncLoop(N - 1, asyncTick, () => {
- BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
- blockMixCb();
- });
- BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
- blockMixCb();
- await asyncLoop(N, asyncTick, () => {
- // First u32 of the last 64-byte block (u32 is LE)
- const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
- for (let k = 0; k < blockSize32; k++)
- tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
- BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
- blockMixCb();
- });
- }
- if (!isLE)
- byteSwap32(B32);
- return scryptOutput(password, dkLen, B, V, tmp);
- }
- //# sourceMappingURL=scrypt.js.map
|