|
3 months ago | |
---|---|---|
.. | ||
dist | 3 months ago | |
ext | 3 months ago | |
3 months ago | ||
node_modules | 3 months ago | |
scripts | 3 months ago | |
src | 3 months ago | |
LICENSE | 3 months ago | |
README.md | 3 months ago | |
index.d.ts | 3 months ago | |
index.js | 3 months ago | |
light.d.ts | 3 months ago | |
light.js | 3 months ago | |
minimal.d.ts | 3 months ago | |
minimal.js | 3 months ago | |
package.json | 3 months ago | |
tsconfig.json | 3 months ago |
protobuf.js
Protocol Buffers are a language-neutral, platform-neutral, extensible way of serializing structured data for use in communications protocols, data storage, and more, originally designed at Google (see).
protobuf.js is a pure JavaScript implementation with TypeScript support for Node.js and the browser. It's easy to use, does not sacrifice on performance, has good conformance and works out of the box with .proto files!
Installation
How to include protobuf.js in your project.
Usage
A brief introduction to using the toolset.
Examples
A few examples to get you started.
Additional documentation
A list of available documentation resources.
Performance
A few internals and a benchmark on performance.
Compatibility
Notes on compatibility regarding browsers and optional libraries.
Building
How to build the library and its components yourself.
npm install protobufjs --save
// Static code + Reflection + .proto parser
var protobuf = require("protobufjs");
// Static code + Reflection
var protobuf = require("protobufjs/light");
// Static code only
var protobuf = require("protobufjs/minimal");
The optional command line utility to generate static code and reflection bundles lives in the protobufjs-cli
package and can be installed separately:
npm install protobufjs-cli --save-dev
Pick the variant matching your needs and replace the version tag with the exact release your project depends upon. For example, to use the minified full variant:
<script src="//cdn.jsdelivr.net/npm/protobufjs@7.X.X/dist/protobuf.min.js"></script>
Distribution | Location |
---|---|
Full | https://cdn.jsdelivr.net/npm/protobufjs/dist/ |
Light | https://cdn.jsdelivr.net/npm/protobufjs/dist/light/ |
Minimal | https://cdn.jsdelivr.net/npm/protobufjs/dist/minimal/ |
All variants support CommonJS and AMD loaders and export globally as window.protobuf
.
Because JavaScript is a dynamically typed language, protobuf.js utilizes the concept of a valid message in order to provide the best possible performance (and, as a side product, proper typings):
A valid message is an object (1) not missing any required fields and (2) exclusively composed of JS types understood by the wire format writer.
There are two possible types of valid messages and the encoder is able to work with both of these for convenience:
In a nutshell, the wire format writer understands the following types:
Field type | Expected JS type (create, encode) | Conversion (fromObject) |
---|---|---|
s-/u-/int32 s-/fixed32 |
number (32 bit integer) |
value | 0 if signedvalue >>> 0 if unsigned |
s-/u-/int64 s-/fixed64 |
Long -like (optimal)number (53 bit integer) |
Long.fromValue(value) with long.jsparseInt(value, 10) otherwise |
float double |
number |
Number(value) |
bool | boolean |
Boolean(value) |
string | string |
String(value) |
bytes | Uint8Array (optimal)Buffer (optimal under node)Array.<number> (8 bit integers) |
base64.decode(value) if a string Object with non-zero .length is assumed to be buffer-like |
enum | number (32 bit integer) |
Looks up the numeric id if a string |
message | Valid message | Message.fromObject(value) |
repeated T | Array<T> |
Copy |
map | Object<K,V> |
Copy |
Type (T) | Extends | Type-specific properties |
---|---|---|
ReflectionObject | options | |
Namespace | ReflectionObject | nested |
Root | Namespace | nested |
Type | Namespace | fields |
Enum | ReflectionObject | values |
Field | ReflectionObject | rule, type, id |
MapField | Field | keyType |
OneOf | ReflectionObject | oneof (array of field names) |
Service | Namespace | methods |
Method | ReflectionObject | type, requestType, responseType, requestStream, responseStream |
T.fromJSON(name, json)
creates the respective reflection object from a JSON descriptorT#toJSON()
creates a JSON descriptor from the respective reflection object (its name is used as the key within the parent)Exclusively using JSON descriptors instead of .proto files enables the use of just the light library (the parser isn't required in this case).
A JSON descriptor can either be loaded the usual way:
protobuf.load("awesome.json", function(err, root) {
if (err) throw err;
// Continue at "Obtain a message type" above
});
Or it can be loaded inline:
var jsonDescriptor = require("./awesome.json"); // exemplary for node
var root = protobuf.Root.fromJSON(jsonDescriptor);
// Continue at "Obtain a message type" above
Both the full and the light library include full reflection support. One could, for example, define the .proto definitions seen in the examples above using just reflection:
...
var Root = protobuf.Root,
Type = protobuf.Type,
Field = protobuf.Field;
var AwesomeMessage = new Type("AwesomeMessage").add(new Field("awesomeField", 1, "string"));
var root = new Root().define("awesomepackage").add(AwesomeMessage);
// Continue at "Create a new message" above
...
Detailed information on the reflection structure is available within the API documentation.
Message classes can also be extended with custom functionality and it is also possible to register a custom constructor with a reflected message type:
...
// Define a custom constructor
function AwesomeMessage(properties) {
// custom initialization code
...
}
// Register the custom constructor with its reflected type (*)
root.lookupType("awesomepackage.AwesomeMessage").ctor = AwesomeMessage;
// Define custom functionality
AwesomeMessage.customStaticMethod = function() { ... };
AwesomeMessage.prototype.customInstanceMethod = function() { ... };
// Continue at "Create a new message" above
(*) Besides referencing its reflected type through AwesomeMessage.$type
and AwesomeMesage#$type
, the respective custom class is automatically populated with:
AwesomeMessage.create
AwesomeMessage.encode
and AwesomeMessage.encodeDelimited
AwesomeMessage.decode
and AwesomeMessage.decodeDelimited
AwesomeMessage.verify
AwesomeMessage.fromObject
, AwesomeMessage.toObject
and AwesomeMessage#toJSON
Afterwards, decoded messages of this type are instanceof AwesomeMessage
.
Alternatively, it is also possible to reuse and extend the internal constructor if custom initialization code is not required:
...
// Reuse the internal constructor
var AwesomeMessage = root.lookupType("awesomepackage.AwesomeMessage").ctor;
// Define custom functionality
AwesomeMessage.customStaticMethod = function() { ... };
AwesomeMessage.prototype.customInstanceMethod = function() { ... };
// Continue at "Create a new message" above
The library also supports consuming services but it doesn't make any assumptions about the actual transport channel. Instead, a user must provide a suitable RPC implementation, which is an asynchronous function that takes the reflected service method, the binary request and a node-style callback as its parameters:
function rpcImpl(method, requestData, callback) {
// perform the request using an HTTP request or a WebSocket for example
var responseData = ...;
// and call the callback with the binary response afterwards:
callback(null, responseData);
}
Below is a working example with a typescript implementation using grpc npm package.
const grpc = require('grpc')
const Client = grpc.makeGenericClientConstructor({})
const client = new Client(
grpcServerUrl,
grpc.credentials.createInsecure()
)
const rpcImpl = function(method, requestData, callback) {
client.makeUnaryRequest(
method.name,
arg => arg,
arg => arg,
requestData,
callback
)
}
Example:
// greeter.proto
syntax = "proto3";
service Greeter {
rpc SayHello (HelloRequest) returns (HelloReply) {}
}
message HelloRequest {
string name = 1;
}
message HelloReply {
string message = 1;
}
...
var Greeter = root.lookup("Greeter");
var greeter = Greeter.create(/* see above */ rpcImpl, /* request delimited? */ false, /* response delimited? */ false);
greeter.sayHello({ name: 'you' }, function(err, response) {
console.log('Greeting:', response.message);
});
Services also support promises:
greeter.sayHello({ name: 'you' })
.then(function(response) {
console.log('Greeting:', response.message);
});
There is also an example for streaming RPC.
Note that the service API is meant for clients. Implementing a server-side endpoint pretty much always requires transport channel (i.e. http, websocket, etc.) specific code with the only common denominator being that it decodes and encodes messages.
The library ships with its own type definitions and modern editors like Visual Studio Code will automatically detect and use them for code completion.
The npm package depends on @types/node because of Buffer
and @types/long because of Long
. If you are not building for node and/or not using long.js, it should be safe to exclude them manually.
The API shown above works pretty much the same with TypeScript. However, because everything is typed, accessing fields on instances of dynamically generated message classes requires either using bracket-notation (i.e. message["awesomeField"]
) or explicit casts. Alternatively, it is possible to use a typings file generated for its static counterpart.
import { load } from "protobufjs"; // respectively "./node_modules/protobufjs"
load("awesome.proto", function(err, root) {
if (err)
throw err;
// example code
const AwesomeMessage = root.lookupType("awesomepackage.AwesomeMessage");
let message = AwesomeMessage.create({ awesomeField: "hello" });
console.log(`message = ${JSON.stringify(message)}`);
let buffer = AwesomeMessage.encode(message).finish();
console.log(`buffer = ${Array.prototype.toString.call(buffer)}`);
let decoded = AwesomeMessage.decode(buffer);
console.log(`decoded = ${JSON.stringify(decoded)}`);
});
If you generated static code to bundle.js
using the CLI and its type definitions to bundle.d.ts
, then you can just do:
import { AwesomeMessage } from "./bundle.js";
// example code
let message = AwesomeMessage.create({ awesomeField: "hello" });
let buffer = AwesomeMessage.encode(message).finish();
let decoded = AwesomeMessage.decode(buffer);
The library also includes an early implementation of decorators.
Note that decorators are an experimental feature in TypeScript and that declaration order is important depending on the JS target. For example, @Field.d(2, AwesomeArrayMessage)
requires that AwesomeArrayMessage
has been defined earlier when targeting ES5
.
import { Message, Type, Field, OneOf } from "protobufjs/light"; // respectively "./node_modules/protobufjs/light.js"
export class AwesomeSubMessage extends Message<AwesomeSubMessage> {
@Field.d(1, "string")
public awesomeString: string;
}
export enum AwesomeEnum {
ONE = 1,
TWO = 2
}
@Type.d("SuperAwesomeMessage")
export class AwesomeMessage extends Message<AwesomeMessage> {
@Field.d(1, "string", "optional", "awesome default string")
public awesomeField: string;
@Field.d(2, AwesomeSubMessage)
public awesomeSubMessage: AwesomeSubMessage;
@Field.d(3, AwesomeEnum, "optional", AwesomeEnum.ONE)
public awesomeEnum: AwesomeEnum;
@OneOf.d("awesomeSubMessage", "awesomeEnum")
public which: string;
}
// example code
let message = new AwesomeMessage({ awesomeField: "hello" });
let buffer = AwesomeMessage.encode(message).finish();
let decoded = AwesomeMessage.decode(buffer);
Supported decorators are:
Type.d(typeName?: string
) (optional)
annotates a class as a protobuf message type. If typeName
is not specified, the constructor's runtime function name is used for the reflected type.
Field.d<T>(fieldId: number
, fieldType: string | Constructor<T>
, fieldRule?: "optional" | "required" | "repeated"
, defaultValue?: T
)
annotates a property as a protobuf field with the specified id and protobuf type.
MapField.d<T extends { [key: string]: any }>(fieldId: number
, fieldKeyType: string
, fieldValueType. string | Constructor<{}>
)
annotates a property as a protobuf map field with the specified id, protobuf key and value type.
OneOf.d<T extends string>(...fieldNames: string[]
)
annotates a property as a protobuf oneof covering the specified fields.
Other notes:
protobuf.roots["decorated"]
using a flat structure, so no duplicate names.ProTip! Not as pretty, but you can use decorators in plain JavaScript as well.
The package includes a benchmark that compares protobuf.js performance to native JSON (as far as this is possible) and Google's JS implementation. On an i7-2600K running node 6.9.1 it yields:
benchmarking encoding performance ...
protobuf.js (reflect) x 541,707 ops/sec ±1.13% (87 runs sampled)
protobuf.js (static) x 548,134 ops/sec ±1.38% (89 runs sampled)
JSON (string) x 318,076 ops/sec ±0.63% (93 runs sampled)
JSON (buffer) x 179,165 ops/sec ±2.26% (91 runs sampled)
google-protobuf x 74,406 ops/sec ±0.85% (86 runs sampled)
protobuf.js (static) was fastest
protobuf.js (reflect) was 0.9% ops/sec slower (factor 1.0)
JSON (string) was 41.5% ops/sec slower (factor 1.7)
JSON (buffer) was 67.6% ops/sec slower (factor 3.1)
google-protobuf was 86.4% ops/sec slower (factor 7.3)
benchmarking decoding performance ...
protobuf.js (reflect) x 1,383,981 ops/sec ±0.88% (93 runs sampled)
protobuf.js (static) x 1,378,925 ops/sec ±0.81% (93 runs sampled)
JSON (string) x 302,444 ops/sec ±0.81% (93 runs sampled)
JSON (buffer) x 264,882 ops/sec ±0.81% (93 runs sampled)
google-protobuf x 179,180 ops/sec ±0.64% (94 runs sampled)
protobuf.js (reflect) was fastest
protobuf.js (static) was 0.3% ops/sec slower (factor 1.0)
JSON (string) was 78.1% ops/sec slower (factor 4.6)
JSON (buffer) was 80.8% ops/sec slower (factor 5.2)
google-protobuf was 87.0% ops/sec slower (factor 7.7)
benchmarking combined performance ...
protobuf.js (reflect) x 275,900 ops/sec ±0.78% (90 runs sampled)
protobuf.js (static) x 290,096 ops/sec ±0.96% (90 runs sampled)
JSON (string) x 129,381 ops/sec ±0.77% (90 runs sampled)
JSON (buffer) x 91,051 ops/sec ±0.94% (90 runs sampled)
google-protobuf x 42,050 ops/sec ±0.85% (91 runs sampled)
protobuf.js (static) was fastest
protobuf.js (reflect) was 4.7% ops/sec slower (factor 1.0)
JSON (string) was 55.3% ops/sec slower (factor 2.2)
JSON (buffer) was 68.6% ops/sec slower (factor 3.2)
google-protobuf was 85.5% ops/sec slower (factor 6.9)
These results are achieved by
You can also run the benchmark ...
$> npm run bench
and the profiler yourself (the latter requires a recent version of node):
$> npm run prof <encode|decode|encode-browser|decode-browser> [iterations=10000000]
Note that as of this writing, the benchmark suite performs significantly slower on node 7.2.0 compared to 6.9.1 because moths.
google/protobuf/descriptor.proto
, options are parsed and presented literally.Long
instance instead of a possibly unsafe JavaScript number (see).To build the library or its components yourself, clone it from GitHub and install the development dependencies:
$> git clone https://github.com/protobufjs/protobuf.js.git
$> cd protobuf.js
$> npm install
Building the respective development and production versions with their respective source maps to dist/
:
$> npm run build
Building the documentation to docs/
:
$> npm run docs
Building the TypeScript definition to index.d.ts
:
$> npm run build:types
By default, protobuf.js integrates into any browserify build-process without requiring any optional modules. Hence:
long
module somewhere in your project as it will be excluded otherwise. This assumes that a global require
function is present that protobuf.js can call to obtain the long module.If there is no global require
function present after bundling, it's also possible to assign the long module programmatically:
var Long = ...;
protobuf.util.Long = Long;
protobuf.configure();
License: BSD 3-Clause License