/** * FaceAPI Demo for NodeJS * - Uses external library [@canvas/image](https://www.npmjs.com/package/@canvas/image) to decode image * - Loads image from provided param * - Outputs results to console */ // @canvas/image can decode jpeg, png, webp // must be installed manually as it just a demo dependency and not actual face-api dependency const image = require('@canvas/image'); // eslint-disable-line node/no-missing-require const fs = require('fs'); const log = require('@vladmandic/pilogger'); const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode // const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases) const modelPath = 'model/'; const imageFile = 'demo/sample1.jpg'; const ssdOptions = { minConfidence: 0.1, maxResults: 10 }; async function main() { log.header(); const buffer = fs.readFileSync(imageFile); // read image from disk const canvas = await image.imageFromBuffer(buffer); // decode to canvas const imageData = image.getImageData(canvas); // read decoded image data from canvas log.info('image:', imageFile, canvas.width, canvas.height); const tensor = tf.tidy(() => { // create tensor from image data const data = tf.tensor(Array.from(imageData?.data || []), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array and flip to height x width const channels = tf.split(data, 4, 2); // split rgba to channels const rgb = tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb const reshape = tf.reshape(rgb, [1, canvas.height, canvas.width, 3]); // move extra dim from the end of tensor and use it as batch number instead return reshape; }); log.info('tensor:', tensor.shape, tensor.size); // load models await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath); await faceapi.nets.ageGenderNet.loadFromDisk(modelPath); await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath); await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath); await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath); const optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options(ssdOptions); // create options object const result = await faceapi // run detection .detectAllFaces(tensor, optionsSSDMobileNet) .withFaceLandmarks() .withFaceExpressions() .withFaceDescriptors() .withAgeAndGender(); log.data('results:', result.length); } main();