/** * FaceAPI Demo for NodeJS using WASM * - Loads WASM binaries from external CDN * - Loads image * - Outputs results to console */ const fs = require('fs'); const image = require('@canvas/image'); // eslint-disable-line node/no-missing-require const tf = require('@tensorflow/tfjs'); const wasm = require('@tensorflow/tfjs-backend-wasm'); const faceapi = require('../dist/face-api.node-wasm.js'); // use this when using face-api in dev mode async function readImage(imageFile) { const buffer = fs.readFileSync(imageFile); // read image from disk const canvas = await image.imageFromBuffer(buffer); // decode to canvas const imageData = image.getImageData(canvas); // read decoded image data from canvas const tensor = tf.tidy(() => { // create tensor from image data const data = tf.tensor(Array.from(imageData?.data || []), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array and flip to height x width const channels = tf.split(data, 4, 2); // split rgba to channels const rgb = tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb const squeeze = tf.squeeze(rgb); // move extra dim from the end of tensor and use it as batch number instead return squeeze; }); console.log(`Image: ${imageFile} [${canvas.width} x ${canvas.height} Tensor: ${tensor.shape}, Size: ${tensor.size}`); // eslint-disable-line no-console return tensor; } async function main() { wasm.setWasmPaths('https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm/dist/', true); await tf.setBackend('wasm'); await tf.ready(); console.log(`Version: FaceAPI ${faceapi.version} TensorFlow/JS ${tf.version_core} Backend: ${faceapi.tf.getBackend()}`); // eslint-disable-line no-console await faceapi.nets.ssdMobilenetv1.loadFromDisk('model'); // load models from a specific patch await faceapi.nets.faceLandmark68Net.loadFromDisk('model'); await faceapi.nets.ageGenderNet.loadFromDisk('model'); await faceapi.nets.faceRecognitionNet.loadFromDisk('model'); await faceapi.nets.faceExpressionNet.loadFromDisk('model'); const options = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.1, maxResults: 10 }); // set model options const tensor = await readImage('demo/sample1.jpg'); const t0 = performance.now(); const result = await faceapi.detectAllFaces(tensor, options) // run detection .withFaceLandmarks() .withFaceExpressions() .withFaceDescriptors() .withAgeAndGender(); tf.dispose(tensor); // dispose tensors to avoid memory leaks const t1 = performance.now(); console.log('Time', t1 - t0); // eslint-disable-line no-console console.log('Result', result); // eslint-disable-line no-console } main();