/** * FaceAPI Demo for NodeJS * - Uses external library [node-fetch](https://www.npmjs.com/package/node-fetch) to load images via http * - Loads image from provided param * - Outputs results to console */ const fs = require('fs'); const process = require('process'); const path = require('path'); const log = require('@vladmandic/pilogger'); const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode // const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases) const modelPathRoot = '../model'; const imgPathRoot = './demo'; // modify to include your sample images const minConfidence = 0.15; const maxResults = 5; let optionsSSDMobileNet; let fetch; // dynamically imported later async function image(input) { // read input image file and create tensor to be used for processing let buffer; log.info('Loading image:', input); if (input.startsWith('http:') || input.startsWith('https:')) { const res = await fetch(input); if (res && res.ok) buffer = await res.buffer(); else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type')); } else { buffer = fs.readFileSync(input); } // decode image using tfjs-node so we don't need external depenencies // can also be done using canvas.js or some other 3rd party image library if (!buffer) return {}; const tensor = tf.tidy(() => { const decode = faceapi.tf.node.decodeImage(buffer, 3); let expand; if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb const channels = faceapi.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels const rgb = faceapi.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha expand = faceapi.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead } else { expand = faceapi.tf.expandDims(decode, 0); } const cast = faceapi.tf.cast(expand, 'float32'); return cast; }); return tensor; } async function detect(tensor) { try { const result = await faceapi .detectAllFaces(tensor, optionsSSDMobileNet) .withFaceLandmarks() .withFaceExpressions() .withFaceDescriptors() .withAgeAndGender(); return result; } catch (err) { log.error('Caught error', err.message); return []; } } // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars function detectPromise(tensor) { return new Promise((resolve) => faceapi .detectAllFaces(tensor, optionsSSDMobileNet) .withFaceLandmarks() .withFaceExpressions() .withFaceDescriptors() .withAgeAndGender() .then((res) => resolve(res)) .catch((err) => { log.error('Caught error', err.message); resolve([]); })); } function print(face) { const expression = Object.entries(face.expressions).reduce((acc, val) => ((val[1] > acc[1]) ? val : acc), ['', 0]); const box = [face.alignedRect._box._x, face.alignedRect._box._y, face.alignedRect._box._width, face.alignedRect._box._height]; const gender = `Gender: ${Math.round(100 * face.genderProbability)}% ${face.gender}`; log.data(`Detection confidence: ${Math.round(100 * face.detection._score)}% ${gender} Age: ${Math.round(10 * face.age) / 10} Expression: ${Math.round(100 * expression[1])}% ${expression[0]} Box: ${box.map((a) => Math.round(a))}`); } async function main() { log.header(); log.info('FaceAPI single-process test'); // eslint-disable-next-line node/no-extraneous-import fetch = (await import('node-fetch')).default; // eslint-disable-line node/no-missing-import await faceapi.tf.setBackend('tensorflow'); await faceapi.tf.ready(); log.state(`Version: TensorFlow/JS ${faceapi.tf?.version_core} FaceAPI ${faceapi.version} Backend: ${faceapi.tf?.getBackend()}`); log.info('Loading FaceAPI models'); const modelPath = path.join(__dirname, modelPathRoot); await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath); await faceapi.nets.ageGenderNet.loadFromDisk(modelPath); await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath); await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath); await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath); optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults }); if (process.argv.length !== 4) { const t0 = process.hrtime.bigint(); const dir = fs.readdirSync(imgPathRoot); for (const img of dir) { if (!img.toLocaleLowerCase().endsWith('.jpg')) continue; const tensor = await image(path.join(imgPathRoot, img)); const result = await detect(tensor); log.data('Image:', img, 'Detected faces:', result.length); for (const face of result) print(face); tensor.dispose(); } const t1 = process.hrtime.bigint(); log.info('Processed', dir.length, 'images in', Math.trunc(Number((t1 - t0)) / 1000 / 1000), 'ms'); } else { const param = process.argv[2]; if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) { const tensor = await image(param); const result = await detect(tensor); // const result = await detectPromise(null); log.data('Image:', param, 'Detected faces:', result.length); for (const face of result) print(face); tensor.dispose(); } } } main();