"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("@tensorflow/tfjs-core"); var fullyConnectedLayer_1 = require("../common/fullyConnectedLayer"); var prelu_1 = require("./prelu"); var sharedLayers_1 = require("./sharedLayers"); function RNet(x, params) { return tf.tidy(function () { var convOut = sharedLayers_1.sharedLayer(x, params); var vectorized = tf.reshape(convOut, [convOut.shape[0], params.fc1.weights.shape[0]]); var fc1 = fullyConnectedLayer_1.fullyConnectedLayer(vectorized, params.fc1); var prelu4 = prelu_1.prelu(fc1, params.prelu4_alpha); var fc2_1 = fullyConnectedLayer_1.fullyConnectedLayer(prelu4, params.fc2_1); var max = tf.expandDims(tf.max(fc2_1, 1), 1); var prob = tf.softmax(tf.sub(fc2_1, max), 1); var regions = fullyConnectedLayer_1.fullyConnectedLayer(prelu4, params.fc2_2); var scores = tf.unstack(prob, 1)[1]; return { scores: scores, regions: regions }; }); } exports.RNet = RNet; //# sourceMappingURL=RNet.js.map