"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var tslib_1 = require("tslib"); var tf = require("@tensorflow/tfjs-core"); var common_1 = require("../common"); var dom_1 = require("../dom"); var NeuralNetwork_1 = require("../NeuralNetwork"); var ops_1 = require("../ops"); var utils_1 = require("../utils"); var extractParams_1 = require("./extractParams"); var extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap"); function conv(x, params, stride) { return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias); } function reductionBlock(x, params, isActivateInput) { if (isActivateInput === void 0) { isActivateInput = true; } var out = isActivateInput ? tf.relu(x) : x; out = common_1.depthwiseSeparableConv(out, params.separable_conv0, [1, 1]); out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = tf.maxPool(out, [3, 3], [2, 2], 'same'); out = tf.add(out, conv(x, params.expansion_conv, [2, 2])); return out; } function mainBlock(x, params) { var out = common_1.depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]); out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]); out = tf.add(out, x); return out; } var TinyXception = /** @class */ (function (_super) { tslib_1.__extends(TinyXception, _super); function TinyXception(numMainBlocks) { var _this = _super.call(this, 'TinyXception') || this; _this._numMainBlocks = numMainBlocks; return _this; } TinyXception.prototype.forwardInput = function (input) { var _this = this; var params = this.params; if (!params) { throw new Error('TinyXception - load model before inference'); } return tf.tidy(function () { var batchTensor = input.toBatchTensor(112, true); var meanRgb = [122.782, 117.001, 104.298]; var normalized = ops_1.normalize(batchTensor, meanRgb).div(tf.scalar(256)); var out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2])); out = reductionBlock(out, params.entry_flow.reduction_block_0, false); out = reductionBlock(out, params.entry_flow.reduction_block_1); utils_1.range(_this._numMainBlocks, 0, 1).forEach(function (idx) { out = mainBlock(out, params.middle_flow["main_block_" + idx]); }); out = reductionBlock(out, params.exit_flow.reduction_block); out = tf.relu(common_1.depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1])); return out; }); }; TinyXception.prototype.forward = function (input) { return tslib_1.__awaiter(this, void 0, void 0, function () { var _a; return tslib_1.__generator(this, function (_b) { switch (_b.label) { case 0: _a = this.forwardInput; return [4 /*yield*/, dom_1.toNetInput(input)]; case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])]; } }); }); }; TinyXception.prototype.getDefaultModelName = function () { return 'tiny_xception_model'; }; TinyXception.prototype.extractParamsFromWeigthMap = function (weightMap) { return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(weightMap, this._numMainBlocks); }; TinyXception.prototype.extractParams = function (weights) { return extractParams_1.extractParams(weights, this._numMainBlocks); }; return TinyXception; }(NeuralNetwork_1.NeuralNetwork)); exports.TinyXception = TinyXception; //# sourceMappingURL=TinyXception.js.map