import { __awaiter, __extends, __generator } from "tslib"; import * as tf from '@tensorflow/tfjs-core'; import { depthwiseSeparableConv } from '../common'; import { toNetInput } from '../dom'; import { NeuralNetwork } from '../NeuralNetwork'; import { normalize } from '../ops'; import { range } from '../utils'; import { extractParams } from './extractParams'; import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap'; function conv(x, params, stride) { return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias); } function reductionBlock(x, params, isActivateInput) { if (isActivateInput === void 0) { isActivateInput = true; } var out = isActivateInput ? tf.relu(x) : x; out = depthwiseSeparableConv(out, params.separable_conv0, [1, 1]); out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = tf.maxPool(out, [3, 3], [2, 2], 'same'); out = tf.add(out, conv(x, params.expansion_conv, [2, 2])); return out; } function mainBlock(x, params) { var out = depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]); out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]); out = tf.add(out, x); return out; } var TinyXception = /** @class */ (function (_super) { __extends(TinyXception, _super); function TinyXception(numMainBlocks) { var _this = _super.call(this, 'TinyXception') || this; _this._numMainBlocks = numMainBlocks; return _this; } TinyXception.prototype.forwardInput = function (input) { var _this = this; var params = this.params; if (!params) { throw new Error('TinyXception - load model before inference'); } return tf.tidy(function () { var batchTensor = input.toBatchTensor(112, true); var meanRgb = [122.782, 117.001, 104.298]; var normalized = normalize(batchTensor, meanRgb).div(tf.scalar(256)); var out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2])); out = reductionBlock(out, params.entry_flow.reduction_block_0, false); out = reductionBlock(out, params.entry_flow.reduction_block_1); range(_this._numMainBlocks, 0, 1).forEach(function (idx) { out = mainBlock(out, params.middle_flow["main_block_" + idx]); }); out = reductionBlock(out, params.exit_flow.reduction_block); out = tf.relu(depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1])); return out; }); }; TinyXception.prototype.forward = function (input) { return __awaiter(this, void 0, void 0, function () { var _a; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = this.forwardInput; return [4 /*yield*/, toNetInput(input)]; case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])]; } }); }); }; TinyXception.prototype.getDefaultModelName = function () { return 'tiny_xception_model'; }; TinyXception.prototype.extractParamsFromWeigthMap = function (weightMap) { return extractParamsFromWeigthMap(weightMap, this._numMainBlocks); }; TinyXception.prototype.extractParams = function (weights) { return extractParams(weights, this._numMainBlocks); }; return TinyXception; }(NeuralNetwork)); export { TinyXception }; //# sourceMappingURL=TinyXception.js.map