123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- /**
- * FaceAPI Demo for NodeJS
- * - Uses external library [@canvas/image](https://www.npmjs.com/package/@canvas/image) to decode image
- * - Loads image from provided param
- * - Outputs results to console
- */
- // @canvas/image can decode jpeg, png, webp
- // must be installed manually as it just a demo dependency and not actual face-api dependency
- const image = require('@canvas/image'); // eslint-disable-line node/no-missing-require
- const fs = require('fs');
- const log = require('@vladmandic/pilogger');
- const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
- const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
- // const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
- const modelPath = 'model/';
- const imageFile = 'demo/sample1.jpg';
- const ssdOptions = { minConfidence: 0.1, maxResults: 10 };
- async function main() {
- log.header();
- const buffer = fs.readFileSync(imageFile); // read image from disk
- const canvas = await image.imageFromBuffer(buffer); // decode to canvas
- const imageData = image.getImageData(canvas); // read decoded image data from canvas
- log.info('image:', imageFile, canvas.width, canvas.height);
- const tensor = tf.tidy(() => { // create tensor from image data
- const data = tf.tensor(Array.from(imageData?.data || []), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array and flip to height x width
- const channels = tf.split(data, 4, 2); // split rgba to channels
- const rgb = tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb
- const reshape = tf.reshape(rgb, [1, canvas.height, canvas.width, 3]); // move extra dim from the end of tensor and use it as batch number instead
- return reshape;
- });
- log.info('tensor:', tensor.shape, tensor.size);
- // load models
- await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath);
- await faceapi.nets.ageGenderNet.loadFromDisk(modelPath);
- await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath);
- await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath);
- await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
- const optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options(ssdOptions); // create options object
- const result = await faceapi // run detection
- .detectAllFaces(tensor, optionsSSDMobileNet)
- .withFaceLandmarks()
- .withFaceExpressions()
- .withFaceDescriptors()
- .withAgeAndGender();
- log.data('results:', result.length);
- }
- main();
|