1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- /**
- * FaceAPI Demo for NodeJS
- * - Starts multiple worker processes and uses them as worker pool to process all input images
- * - Images are enumerated in main process and sent for processing to worker processes via ipc
- */
- const fs = require('fs');
- const path = require('path');
- const log = require('@vladmandic/pilogger'); // this is my simple logger with few extra features
- const child_process = require('child_process');
- // note that main process does not need to import faceapi or tfjs at all as processing is done in a worker process
- const imgPathRoot = './demo'; // modify to include your sample images
- const numWorkers = 4; // how many workers will be started
- const workers = []; // this holds worker processes
- const images = []; // this holds queue of enumerated images
- const t = []; // timers
- let numImages;
- // trigered by main when worker sends ready message
- // if image pool is empty, signal worker to exit otherwise dispatch image to worker and remove image from queue
- async function detect(worker) {
- if (!t[2]) t[2] = process.hrtime.bigint(); // first time do a timestamp so we can measure initial latency
- if (images.length === numImages) worker.send({ test: true }); // for first image in queue just measure latency
- if (images.length === 0) worker.send({ exit: true }); // nothing left in queue
- else {
- log.state('Main: dispatching to worker:', worker.pid);
- worker.send({ image: images[0] });
- images.shift();
- }
- }
- // loop that waits for all workers to complete
- function waitCompletion() {
- const activeWorkers = workers.reduce((any, worker) => (any += worker.connected ? 1 : 0), 0);
- if (activeWorkers > 0) setImmediate(() => waitCompletion());
- else {
- t[1] = process.hrtime.bigint();
- log.info('Processed:', numImages, 'images in', 'total:', Math.trunc(Number(t[1] - t[0]) / 1000000), 'ms', 'working:', Math.trunc(Number(t[1] - t[2]) / 1000000), 'ms', 'average:', Math.trunc(Number(t[1] - t[2]) / numImages / 1000000), 'ms');
- }
- }
- function measureLatency() {
- t[3] = process.hrtime.bigint();
- const latencyInitialization = Math.trunc(Number(t[2] - t[0]) / 1000 / 1000);
- const latencyRoundTrip = Math.trunc(Number(t[3] - t[2]) / 1000 / 1000);
- log.info('Latency: worker initializtion: ', latencyInitialization, 'message round trip:', latencyRoundTrip);
- }
- async function main() {
- log.header();
- log.info('FaceAPI multi-process test');
- // enumerate all images into queue
- const dir = fs.readdirSync(imgPathRoot);
- for (const imgFile of dir) {
- if (imgFile.toLocaleLowerCase().endsWith('.jpg')) images.push(path.join(imgPathRoot, imgFile));
- }
- numImages = images.length;
- t[0] = process.hrtime.bigint();
- // manage worker processes
- for (let i = 0; i < numWorkers; i++) {
- // create worker process
- workers[i] = await child_process.fork('demo/node-multiprocess-worker.js', ['special']);
- // parse message that worker process sends back to main
- // if message is ready, dispatch next image in queue
- // if message is processing result, just print how many faces were detected
- // otherwise it's an unknown message
- workers[i].on('message', (msg) => {
- if (msg.ready) detect(workers[i]);
- else if (msg.image) log.data('Main: worker finished:', workers[i].pid, 'detected faces:', msg.detected.length);
- else if (msg.test) measureLatency();
- else log.data('Main: worker message:', workers[i].pid, msg);
- });
- // just log when worker exits
- workers[i].on('exit', (msg) => log.state('Main: worker exit:', workers[i].pid, msg));
- // just log which worker was started
- log.state('Main: started worker:', workers[i].pid);
- }
- // wait for all workers to complete
- waitCompletion();
- }
- main();
|