node-wasm.js 2.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. /**
  2. * FaceAPI Demo for NodeJS using WASM
  3. * - Loads WASM binaries from external CDN
  4. * - Loads image
  5. * - Outputs results to console
  6. */
  7. const fs = require('fs');
  8. const image = require('@canvas/image'); // eslint-disable-line node/no-missing-require
  9. const tf = require('@tensorflow/tfjs');
  10. const wasm = require('@tensorflow/tfjs-backend-wasm');
  11. const faceapi = require('../dist/face-api.node-wasm.js'); // use this when using face-api in dev mode
  12. async function readImage(imageFile) {
  13. const buffer = fs.readFileSync(imageFile); // read image from disk
  14. const canvas = await image.imageFromBuffer(buffer); // decode to canvas
  15. const imageData = image.getImageData(canvas); // read decoded image data from canvas
  16. const tensor = tf.tidy(() => { // create tensor from image data
  17. const data = tf.tensor(Array.from(imageData?.data || []), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array and flip to height x width
  18. const channels = tf.split(data, 4, 2); // split rgba to channels
  19. const rgb = tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb
  20. const squeeze = tf.squeeze(rgb); // move extra dim from the end of tensor and use it as batch number instead
  21. return squeeze;
  22. });
  23. console.log(`Image: ${imageFile} [${canvas.width} x ${canvas.height} Tensor: ${tensor.shape}, Size: ${tensor.size}`); // eslint-disable-line no-console
  24. return tensor;
  25. }
  26. async function main() {
  27. wasm.setWasmPaths('https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm/dist/', true);
  28. await tf.setBackend('wasm');
  29. await tf.ready();
  30. console.log(`Version: FaceAPI ${faceapi.version} TensorFlow/JS ${tf.version_core} Backend: ${faceapi.tf.getBackend()}`); // eslint-disable-line no-console
  31. await faceapi.nets.ssdMobilenetv1.loadFromDisk('model'); // load models from a specific patch
  32. await faceapi.nets.faceLandmark68Net.loadFromDisk('model');
  33. await faceapi.nets.ageGenderNet.loadFromDisk('model');
  34. await faceapi.nets.faceRecognitionNet.loadFromDisk('model');
  35. await faceapi.nets.faceExpressionNet.loadFromDisk('model');
  36. const options = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.1, maxResults: 10 }); // set model options
  37. const tensor = await readImage('demo/sample1.jpg');
  38. const t0 = performance.now();
  39. const result = await faceapi.detectAllFaces(tensor, options) // run detection
  40. .withFaceLandmarks()
  41. .withFaceExpressions()
  42. .withFaceDescriptors()
  43. .withAgeAndGender();
  44. tf.dispose(tensor); // dispose tensors to avoid memory leaks
  45. const t1 = performance.now();
  46. console.log('Time', t1 - t0); // eslint-disable-line no-console
  47. console.log('Result', result); // eslint-disable-line no-console
  48. }
  49. main();