123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- /**
- * FaceAPI Demo for NodeJS
- * - Uses external library [node-fetch](https://www.npmjs.com/package/node-fetch) to load images via http
- * - Loads image from provided param
- * - Outputs results to console
- */
- const fs = require('fs');
- const process = require('process');
- const path = require('path');
- const log = require('@vladmandic/pilogger');
- const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
- const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
- // const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
- const modelPathRoot = '../model';
- const imgPathRoot = './demo'; // modify to include your sample images
- const minConfidence = 0.15;
- const maxResults = 5;
- let optionsSSDMobileNet;
- let fetch; // dynamically imported later
- async function image(input) {
- // read input image file and create tensor to be used for processing
- let buffer;
- log.info('Loading image:', input);
- if (input.startsWith('http:') || input.startsWith('https:')) {
- const res = await fetch(input);
- if (res && res.ok) buffer = await res.buffer();
- else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
- } else {
- buffer = fs.readFileSync(input);
- }
- // decode image using tfjs-node so we don't need external depenencies
- // can also be done using canvas.js or some other 3rd party image library
- if (!buffer) return {};
- const tensor = tf.tidy(() => {
- const decode = faceapi.tf.node.decodeImage(buffer, 3);
- let expand;
- if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
- const channels = faceapi.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels
- const rgb = faceapi.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
- expand = faceapi.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
- } else {
- expand = faceapi.tf.expandDims(decode, 0);
- }
- const cast = faceapi.tf.cast(expand, 'float32');
- return cast;
- });
- return tensor;
- }
- async function detect(tensor) {
- try {
- const result = await faceapi
- .detectAllFaces(tensor, optionsSSDMobileNet)
- .withFaceLandmarks()
- .withFaceExpressions()
- .withFaceDescriptors()
- .withAgeAndGender();
- return result;
- } catch (err) {
- log.error('Caught error', err.message);
- return [];
- }
- }
- // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
- function detectPromise(tensor) {
- return new Promise((resolve) => faceapi
- .detectAllFaces(tensor, optionsSSDMobileNet)
- .withFaceLandmarks()
- .withFaceExpressions()
- .withFaceDescriptors()
- .withAgeAndGender()
- .then((res) => resolve(res))
- .catch((err) => {
- log.error('Caught error', err.message);
- resolve([]);
- }));
- }
- function print(face) {
- const expression = Object.entries(face.expressions).reduce((acc, val) => ((val[1] > acc[1]) ? val : acc), ['', 0]);
- const box = [face.alignedRect._box._x, face.alignedRect._box._y, face.alignedRect._box._width, face.alignedRect._box._height];
- const gender = `Gender: ${Math.round(100 * face.genderProbability)}% ${face.gender}`;
- log.data(`Detection confidence: ${Math.round(100 * face.detection._score)}% ${gender} Age: ${Math.round(10 * face.age) / 10} Expression: ${Math.round(100 * expression[1])}% ${expression[0]} Box: ${box.map((a) => Math.round(a))}`);
- }
- async function main() {
- log.header();
- log.info('FaceAPI single-process test');
- // eslint-disable-next-line node/no-extraneous-import
- fetch = (await import('node-fetch')).default; // eslint-disable-line node/no-missing-import
- await faceapi.tf.setBackend('tensorflow');
- await faceapi.tf.ready();
- log.state(`Version: TensorFlow/JS ${faceapi.tf?.version_core} FaceAPI ${faceapi.version} Backend: ${faceapi.tf?.getBackend()}`);
- log.info('Loading FaceAPI models');
- const modelPath = path.join(__dirname, modelPathRoot);
- await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath);
- await faceapi.nets.ageGenderNet.loadFromDisk(modelPath);
- await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath);
- await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath);
- await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
- optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults });
- if (process.argv.length !== 4) {
- const t0 = process.hrtime.bigint();
- const dir = fs.readdirSync(imgPathRoot);
- for (const img of dir) {
- if (!img.toLocaleLowerCase().endsWith('.jpg')) continue;
- const tensor = await image(path.join(imgPathRoot, img));
- const result = await detect(tensor);
- log.data('Image:', img, 'Detected faces:', result.length);
- for (const face of result) print(face);
- tensor.dispose();
- }
- const t1 = process.hrtime.bigint();
- log.info('Processed', dir.length, 'images in', Math.trunc(Number((t1 - t0)) / 1000 / 1000), 'ms');
- } else {
- const param = process.argv[2];
- if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) {
- const tensor = await image(param);
- const result = await detect(tensor);
- // const result = await detectPromise(null);
- log.data('Image:', param, 'Detected faces:', result.length);
- for (const face of result) print(face);
- tensor.dispose();
- }
- }
- }
- main();
|