123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- var tslib_1 = require("tslib");
- var tf = require("@tensorflow/tfjs-core");
- var fullyConnectedLayer_1 = require("../common/fullyConnectedLayer");
- var util_1 = require("../faceProcessor/util");
- var TinyXception_1 = require("../xception/TinyXception");
- var extractParams_1 = require("./extractParams");
- var extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap");
- var types_1 = require("./types");
- var NeuralNetwork_1 = require("../NeuralNetwork");
- var dom_1 = require("../dom");
- var AgeGenderNet = /** @class */ (function (_super) {
- tslib_1.__extends(AgeGenderNet, _super);
- function AgeGenderNet(faceFeatureExtractor) {
- if (faceFeatureExtractor === void 0) { faceFeatureExtractor = new TinyXception_1.TinyXception(2); }
- var _this = _super.call(this, 'AgeGenderNet') || this;
- _this._faceFeatureExtractor = faceFeatureExtractor;
- return _this;
- }
- Object.defineProperty(AgeGenderNet.prototype, "faceFeatureExtractor", {
- get: function () {
- return this._faceFeatureExtractor;
- },
- enumerable: true,
- configurable: true
- });
- AgeGenderNet.prototype.runNet = function (input) {
- var _this = this;
- var params = this.params;
- if (!params) {
- throw new Error(this._name + " - load model before inference");
- }
- return tf.tidy(function () {
- var bottleneckFeatures = input instanceof dom_1.NetInput
- ? _this.faceFeatureExtractor.forwardInput(input)
- : input;
- var pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1);
- var age = fullyConnectedLayer_1.fullyConnectedLayer(pooled, params.fc.age).as1D();
- var gender = fullyConnectedLayer_1.fullyConnectedLayer(pooled, params.fc.gender);
- return { age: age, gender: gender };
- });
- };
- AgeGenderNet.prototype.forwardInput = function (input) {
- var _this = this;
- return tf.tidy(function () {
- var _a = _this.runNet(input), age = _a.age, gender = _a.gender;
- return { age: age, gender: tf.softmax(gender) };
- });
- };
- AgeGenderNet.prototype.forward = function (input) {
- return tslib_1.__awaiter(this, void 0, void 0, function () {
- var _a;
- return tslib_1.__generator(this, function (_b) {
- switch (_b.label) {
- case 0:
- _a = this.forwardInput;
- return [4 /*yield*/, dom_1.toNetInput(input)];
- case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
- }
- });
- });
- };
- AgeGenderNet.prototype.predictAgeAndGender = function (input) {
- return tslib_1.__awaiter(this, void 0, void 0, function () {
- var netInput, out, ages, genders, ageAndGenderTensors, predictionsByBatch;
- var _this = this;
- return tslib_1.__generator(this, function (_a) {
- switch (_a.label) {
- case 0: return [4 /*yield*/, dom_1.toNetInput(input)];
- case 1:
- netInput = _a.sent();
- return [4 /*yield*/, this.forwardInput(netInput)];
- case 2:
- out = _a.sent();
- ages = tf.unstack(out.age);
- genders = tf.unstack(out.gender);
- ageAndGenderTensors = ages.map(function (ageTensor, i) { return ({
- ageTensor: ageTensor,
- genderTensor: genders[i]
- }); });
- return [4 /*yield*/, Promise.all(ageAndGenderTensors.map(function (_a) {
- var ageTensor = _a.ageTensor, genderTensor = _a.genderTensor;
- return tslib_1.__awaiter(_this, void 0, void 0, function () {
- var age, probMale, isMale, gender, genderProbability;
- return tslib_1.__generator(this, function (_b) {
- switch (_b.label) {
- case 0: return [4 /*yield*/, ageTensor.data()];
- case 1:
- age = (_b.sent())[0];
- return [4 /*yield*/, genderTensor.data()];
- case 2:
- probMale = (_b.sent())[0];
- isMale = probMale > 0.5;
- gender = isMale ? types_1.Gender.MALE : types_1.Gender.FEMALE;
- genderProbability = isMale ? probMale : (1 - probMale);
- ageTensor.dispose();
- genderTensor.dispose();
- return [2 /*return*/, { age: age, gender: gender, genderProbability: genderProbability }];
- }
- });
- });
- }))];
- case 3:
- predictionsByBatch = _a.sent();
- out.age.dispose();
- out.gender.dispose();
- return [2 /*return*/, netInput.isBatchInput
- ? predictionsByBatch
- : predictionsByBatch[0]];
- }
- });
- });
- };
- AgeGenderNet.prototype.getDefaultModelName = function () {
- return 'age_gender_model';
- };
- AgeGenderNet.prototype.dispose = function (throwOnRedispose) {
- if (throwOnRedispose === void 0) { throwOnRedispose = true; }
- this.faceFeatureExtractor.dispose(throwOnRedispose);
- _super.prototype.dispose.call(this, throwOnRedispose);
- };
- AgeGenderNet.prototype.loadClassifierParams = function (weights) {
- var _a = this.extractClassifierParams(weights), params = _a.params, paramMappings = _a.paramMappings;
- this._params = params;
- this._paramMappings = paramMappings;
- };
- AgeGenderNet.prototype.extractClassifierParams = function (weights) {
- return extractParams_1.extractParams(weights);
- };
- AgeGenderNet.prototype.extractParamsFromWeigthMap = function (weightMap) {
- var _a = util_1.seperateWeightMaps(weightMap), featureExtractorMap = _a.featureExtractorMap, classifierMap = _a.classifierMap;
- this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap);
- return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(classifierMap);
- };
- AgeGenderNet.prototype.extractParams = function (weights) {
- var classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2);
- var featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize);
- var classifierWeights = weights.slice(weights.length - classifierWeightSize);
- this.faceFeatureExtractor.extractWeights(featureExtractorWeights);
- return this.extractClassifierParams(classifierWeights);
- };
- return AgeGenderNet;
- }(NeuralNetwork_1.NeuralNetwork));
- exports.AgeGenderNet = AgeGenderNet;
- //# sourceMappingURL=AgeGenderNet.js.map
|