1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- var tslib_1 = require("tslib");
- var utils_1 = require("../utils");
- var awaitMediaLoaded_1 = require("./awaitMediaLoaded");
- var isMediaElement_1 = require("./isMediaElement");
- var NetInput_1 = require("./NetInput");
- var resolveInput_1 = require("./resolveInput");
- /**
- * Validates the input to make sure, they are valid net inputs and awaits all media elements
- * to be finished loading.
- *
- * @param input The input, which can be a media element or an array of different media elements.
- * @returns A NetInput instance, which can be passed into one of the neural networks.
- */
- function toNetInput(inputs) {
- return tslib_1.__awaiter(this, void 0, void 0, function () {
- var inputArgArray, getIdxHint, inputArray;
- return tslib_1.__generator(this, function (_a) {
- switch (_a.label) {
- case 0:
- if (inputs instanceof NetInput_1.NetInput) {
- return [2 /*return*/, inputs];
- }
- inputArgArray = Array.isArray(inputs)
- ? inputs
- : [inputs];
- if (!inputArgArray.length) {
- throw new Error('toNetInput - empty array passed as input');
- }
- getIdxHint = function (idx) { return Array.isArray(inputs) ? " at input index " + idx + ":" : ''; };
- inputArray = inputArgArray.map(resolveInput_1.resolveInput);
- inputArray.forEach(function (input, i) {
- if (!isMediaElement_1.isMediaElement(input) && !utils_1.isTensor3D(input) && !utils_1.isTensor4D(input)) {
- if (typeof inputArgArray[i] === 'string') {
- throw new Error("toNetInput -" + getIdxHint(i) + " string passed, but could not resolve HTMLElement for element id " + inputArgArray[i]);
- }
- throw new Error("toNetInput -" + getIdxHint(i) + " expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id");
- }
- if (utils_1.isTensor4D(input)) {
- // if tf.Tensor4D is passed in the input array, the batch size has to be 1
- var batchSize = input.shape[0];
- if (batchSize !== 1) {
- throw new Error("toNetInput -" + getIdxHint(i) + " tf.Tensor4D with batchSize " + batchSize + " passed, but not supported in input array");
- }
- }
- });
- // wait for all media elements being loaded
- return [4 /*yield*/, Promise.all(inputArray.map(function (input) { return isMediaElement_1.isMediaElement(input) && awaitMediaLoaded_1.awaitMediaLoaded(input); }))];
- case 1:
- // wait for all media elements being loaded
- _a.sent();
- return [2 /*return*/, new NetInput_1.NetInput(inputArray, Array.isArray(inputs))];
- }
- });
- });
- }
- exports.toNetInput = toNetInput;
- //# sourceMappingURL=toNetInput.js.map
|