FaceLandmark68NetBase.js 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. "use strict";
  2. Object.defineProperty(exports, "__esModule", { value: true });
  3. var tslib_1 = require("tslib");
  4. var tf = require("@tensorflow/tfjs-core");
  5. var classes_1 = require("../classes");
  6. var FaceLandmarks68_1 = require("../classes/FaceLandmarks68");
  7. var dom_1 = require("../dom");
  8. var FaceProcessor_1 = require("../faceProcessor/FaceProcessor");
  9. var utils_1 = require("../utils");
  10. var FaceLandmark68NetBase = /** @class */ (function (_super) {
  11. tslib_1.__extends(FaceLandmark68NetBase, _super);
  12. function FaceLandmark68NetBase() {
  13. return _super !== null && _super.apply(this, arguments) || this;
  14. }
  15. FaceLandmark68NetBase.prototype.postProcess = function (output, inputSize, originalDimensions) {
  16. var inputDimensions = originalDimensions.map(function (_a) {
  17. var width = _a.width, height = _a.height;
  18. var scale = inputSize / Math.max(height, width);
  19. return {
  20. width: width * scale,
  21. height: height * scale
  22. };
  23. });
  24. var batchSize = inputDimensions.length;
  25. return tf.tidy(function () {
  26. var createInterleavedTensor = function (fillX, fillY) {
  27. return tf.stack([
  28. tf.fill([68], fillX),
  29. tf.fill([68], fillY)
  30. ], 1).as2D(1, 136).as1D();
  31. };
  32. var getPadding = function (batchIdx, cond) {
  33. var _a = inputDimensions[batchIdx], width = _a.width, height = _a.height;
  34. return cond(width, height) ? Math.abs(width - height) / 2 : 0;
  35. };
  36. var getPaddingX = function (batchIdx) { return getPadding(batchIdx, function (w, h) { return w < h; }); };
  37. var getPaddingY = function (batchIdx) { return getPadding(batchIdx, function (w, h) { return h < w; }); };
  38. var landmarkTensors = output
  39. .mul(tf.fill([batchSize, 136], inputSize))
  40. .sub(tf.stack(Array.from(Array(batchSize), function (_, batchIdx) {
  41. return createInterleavedTensor(getPaddingX(batchIdx), getPaddingY(batchIdx));
  42. })))
  43. .div(tf.stack(Array.from(Array(batchSize), function (_, batchIdx) {
  44. return createInterleavedTensor(inputDimensions[batchIdx].width, inputDimensions[batchIdx].height);
  45. })));
  46. return landmarkTensors;
  47. });
  48. };
  49. FaceLandmark68NetBase.prototype.forwardInput = function (input) {
  50. var _this = this;
  51. return tf.tidy(function () {
  52. var out = _this.runNet(input);
  53. return _this.postProcess(out, input.inputSize, input.inputDimensions.map(function (_a) {
  54. var height = _a[0], width = _a[1];
  55. return ({ height: height, width: width });
  56. }));
  57. });
  58. };
  59. FaceLandmark68NetBase.prototype.forward = function (input) {
  60. return tslib_1.__awaiter(this, void 0, void 0, function () {
  61. var _a;
  62. return tslib_1.__generator(this, function (_b) {
  63. switch (_b.label) {
  64. case 0:
  65. _a = this.forwardInput;
  66. return [4 /*yield*/, dom_1.toNetInput(input)];
  67. case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
  68. }
  69. });
  70. });
  71. };
  72. FaceLandmark68NetBase.prototype.detectLandmarks = function (input) {
  73. return tslib_1.__awaiter(this, void 0, void 0, function () {
  74. var netInput, landmarkTensors, landmarksForBatch;
  75. var _this = this;
  76. return tslib_1.__generator(this, function (_a) {
  77. switch (_a.label) {
  78. case 0: return [4 /*yield*/, dom_1.toNetInput(input)];
  79. case 1:
  80. netInput = _a.sent();
  81. landmarkTensors = tf.tidy(function () { return tf.unstack(_this.forwardInput(netInput)); });
  82. return [4 /*yield*/, Promise.all(landmarkTensors.map(function (landmarkTensor, batchIdx) { return tslib_1.__awaiter(_this, void 0, void 0, function () {
  83. var landmarksArray, _a, _b, xCoords, yCoords;
  84. return tslib_1.__generator(this, function (_c) {
  85. switch (_c.label) {
  86. case 0:
  87. _b = (_a = Array).from;
  88. return [4 /*yield*/, landmarkTensor.data()];
  89. case 1:
  90. landmarksArray = _b.apply(_a, [_c.sent()]);
  91. xCoords = landmarksArray.filter(function (_, i) { return utils_1.isEven(i); });
  92. yCoords = landmarksArray.filter(function (_, i) { return !utils_1.isEven(i); });
  93. return [2 /*return*/, new FaceLandmarks68_1.FaceLandmarks68(Array(68).fill(0).map(function (_, i) { return new classes_1.Point(xCoords[i], yCoords[i]); }), {
  94. height: netInput.getInputHeight(batchIdx),
  95. width: netInput.getInputWidth(batchIdx),
  96. })];
  97. }
  98. });
  99. }); }))];
  100. case 2:
  101. landmarksForBatch = _a.sent();
  102. landmarkTensors.forEach(function (t) { return t.dispose(); });
  103. return [2 /*return*/, netInput.isBatchInput
  104. ? landmarksForBatch
  105. : landmarksForBatch[0]];
  106. }
  107. });
  108. });
  109. };
  110. FaceLandmark68NetBase.prototype.getClassifierChannelsOut = function () {
  111. return 136;
  112. };
  113. return FaceLandmark68NetBase;
  114. }(FaceProcessor_1.FaceProcessor));
  115. exports.FaceLandmark68NetBase = FaceLandmark68NetBase;
  116. //# sourceMappingURL=FaceLandmark68NetBase.js.map