12345678910111213141516171819202122 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- var tf = require("@tensorflow/tfjs-core");
- var fullyConnectedLayer_1 = require("../common/fullyConnectedLayer");
- var prelu_1 = require("./prelu");
- var sharedLayers_1 = require("./sharedLayers");
- function RNet(x, params) {
- return tf.tidy(function () {
- var convOut = sharedLayers_1.sharedLayer(x, params);
- var vectorized = tf.reshape(convOut, [convOut.shape[0], params.fc1.weights.shape[0]]);
- var fc1 = fullyConnectedLayer_1.fullyConnectedLayer(vectorized, params.fc1);
- var prelu4 = prelu_1.prelu(fc1, params.prelu4_alpha);
- var fc2_1 = fullyConnectedLayer_1.fullyConnectedLayer(prelu4, params.fc2_1);
- var max = tf.expandDims(tf.max(fc2_1, 1), 1);
- var prob = tf.softmax(tf.sub(fc2_1, max), 1);
- var regions = fullyConnectedLayer_1.fullyConnectedLayer(prelu4, params.fc2_2);
- var scores = tf.unstack(prob, 1)[1];
- return { scores: scores, regions: regions };
- });
- }
- exports.RNet = RNet;
- //# sourceMappingURL=RNet.js.map
|