RNet.js 1.1 KB

12345678910111213141516171819202122
  1. "use strict";
  2. Object.defineProperty(exports, "__esModule", { value: true });
  3. var tf = require("@tensorflow/tfjs-core");
  4. var fullyConnectedLayer_1 = require("../common/fullyConnectedLayer");
  5. var prelu_1 = require("./prelu");
  6. var sharedLayers_1 = require("./sharedLayers");
  7. function RNet(x, params) {
  8. return tf.tidy(function () {
  9. var convOut = sharedLayers_1.sharedLayer(x, params);
  10. var vectorized = tf.reshape(convOut, [convOut.shape[0], params.fc1.weights.shape[0]]);
  11. var fc1 = fullyConnectedLayer_1.fullyConnectedLayer(vectorized, params.fc1);
  12. var prelu4 = prelu_1.prelu(fc1, params.prelu4_alpha);
  13. var fc2_1 = fullyConnectedLayer_1.fullyConnectedLayer(prelu4, params.fc2_1);
  14. var max = tf.expandDims(tf.max(fc2_1, 1), 1);
  15. var prob = tf.softmax(tf.sub(fc2_1, max), 1);
  16. var regions = fullyConnectedLayer_1.fullyConnectedLayer(prelu4, params.fc2_2);
  17. var scores = tf.unstack(prob, 1)[1];
  18. return { scores: scores, regions: regions };
  19. });
  20. }
  21. exports.RNet = RNet;
  22. //# sourceMappingURL=RNet.js.map