123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- var tslib_1 = require("tslib");
- var tf = require("@tensorflow/tfjs-core");
- var classes_1 = require("../classes");
- var FaceDetection_1 = require("../classes/FaceDetection");
- var dom_1 = require("../dom");
- var NeuralNetwork_1 = require("../NeuralNetwork");
- var extractParams_1 = require("./extractParams");
- var extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap");
- var mobileNetV1_1 = require("./mobileNetV1");
- var nonMaxSuppression_1 = require("./nonMaxSuppression");
- var outputLayer_1 = require("./outputLayer");
- var predictionLayer_1 = require("./predictionLayer");
- var SsdMobilenetv1Options_1 = require("./SsdMobilenetv1Options");
- var SsdMobilenetv1 = /** @class */ (function (_super) {
- tslib_1.__extends(SsdMobilenetv1, _super);
- function SsdMobilenetv1() {
- return _super.call(this, 'SsdMobilenetv1') || this;
- }
- SsdMobilenetv1.prototype.forwardInput = function (input) {
- var params = this.params;
- if (!params) {
- throw new Error('SsdMobilenetv1 - load model before inference');
- }
- return tf.tidy(function () {
- var batchTensor = input.toBatchTensor(512, false).toFloat();
- var x = tf.sub(tf.mul(batchTensor, tf.scalar(0.007843137718737125)), tf.scalar(1));
- var features = mobileNetV1_1.mobileNetV1(x, params.mobilenetv1);
- var _a = predictionLayer_1.predictionLayer(features.out, features.conv11, params.prediction_layer), boxPredictions = _a.boxPredictions, classPredictions = _a.classPredictions;
- return outputLayer_1.outputLayer(boxPredictions, classPredictions, params.output_layer);
- });
- };
- SsdMobilenetv1.prototype.forward = function (input) {
- return tslib_1.__awaiter(this, void 0, void 0, function () {
- var _a;
- return tslib_1.__generator(this, function (_b) {
- switch (_b.label) {
- case 0:
- _a = this.forwardInput;
- return [4 /*yield*/, dom_1.toNetInput(input)];
- case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
- }
- });
- });
- };
- SsdMobilenetv1.prototype.locateFaces = function (input, options) {
- if (options === void 0) { options = {}; }
- return tslib_1.__awaiter(this, void 0, void 0, function () {
- var _a, maxResults, minConfidence, netInput, _b, _boxes, _scores, boxes, scores, i, scoresData, _c, _d, iouThreshold, indices, reshapedDims, inputSize, padX, padY, boxesData, results;
- return tslib_1.__generator(this, function (_e) {
- switch (_e.label) {
- case 0:
- _a = new SsdMobilenetv1Options_1.SsdMobilenetv1Options(options), maxResults = _a.maxResults, minConfidence = _a.minConfidence;
- return [4 /*yield*/, dom_1.toNetInput(input)];
- case 1:
- netInput = _e.sent();
- _b = this.forwardInput(netInput), _boxes = _b.boxes, _scores = _b.scores;
- boxes = _boxes[0];
- scores = _scores[0];
- for (i = 1; i < _boxes.length; i++) {
- _boxes[i].dispose();
- _scores[i].dispose();
- }
- _d = (_c = Array).from;
- return [4 /*yield*/, scores.data()];
- case 2:
- scoresData = _d.apply(_c, [_e.sent()]);
- iouThreshold = 0.5;
- indices = nonMaxSuppression_1.nonMaxSuppression(boxes, scoresData, maxResults, iouThreshold, minConfidence);
- reshapedDims = netInput.getReshapedInputDimensions(0);
- inputSize = netInput.inputSize;
- padX = inputSize / reshapedDims.width;
- padY = inputSize / reshapedDims.height;
- boxesData = boxes.arraySync();
- results = indices
- .map(function (idx) {
- var _a = [
- Math.max(0, boxesData[idx][0]),
- Math.min(1.0, boxesData[idx][2])
- ].map(function (val) { return val * padY; }), top = _a[0], bottom = _a[1];
- var _b = [
- Math.max(0, boxesData[idx][1]),
- Math.min(1.0, boxesData[idx][3])
- ].map(function (val) { return val * padX; }), left = _b[0], right = _b[1];
- return new FaceDetection_1.FaceDetection(scoresData[idx], new classes_1.Rect(left, top, right - left, bottom - top), {
- height: netInput.getInputHeight(0),
- width: netInput.getInputWidth(0)
- });
- });
- boxes.dispose();
- scores.dispose();
- return [2 /*return*/, results];
- }
- });
- });
- };
- SsdMobilenetv1.prototype.getDefaultModelName = function () {
- return 'ssd_mobilenetv1_model';
- };
- SsdMobilenetv1.prototype.extractParamsFromWeigthMap = function (weightMap) {
- return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(weightMap);
- };
- SsdMobilenetv1.prototype.extractParams = function (weights) {
- return extractParams_1.extractParams(weights);
- };
- return SsdMobilenetv1;
- }(NeuralNetwork_1.NeuralNetwork));
- exports.SsdMobilenetv1 = SsdMobilenetv1;
- //# sourceMappingURL=SsdMobilenetv1.js.map
|