123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- var tslib_1 = require("tslib");
- var tf = require("@tensorflow/tfjs-core");
- var common_1 = require("../common");
- var dom_1 = require("../dom");
- var NeuralNetwork_1 = require("../NeuralNetwork");
- var ops_1 = require("../ops");
- var utils_1 = require("../utils");
- var extractParams_1 = require("./extractParams");
- var extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap");
- function conv(x, params, stride) {
- return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias);
- }
- function reductionBlock(x, params, isActivateInput) {
- if (isActivateInput === void 0) { isActivateInput = true; }
- var out = isActivateInput ? tf.relu(x) : x;
- out = common_1.depthwiseSeparableConv(out, params.separable_conv0, [1, 1]);
- out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
- out = tf.maxPool(out, [3, 3], [2, 2], 'same');
- out = tf.add(out, conv(x, params.expansion_conv, [2, 2]));
- return out;
- }
- function mainBlock(x, params) {
- var out = common_1.depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]);
- out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
- out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]);
- out = tf.add(out, x);
- return out;
- }
- var TinyXception = /** @class */ (function (_super) {
- tslib_1.__extends(TinyXception, _super);
- function TinyXception(numMainBlocks) {
- var _this = _super.call(this, 'TinyXception') || this;
- _this._numMainBlocks = numMainBlocks;
- return _this;
- }
- TinyXception.prototype.forwardInput = function (input) {
- var _this = this;
- var params = this.params;
- if (!params) {
- throw new Error('TinyXception - load model before inference');
- }
- return tf.tidy(function () {
- var batchTensor = input.toBatchTensor(112, true);
- var meanRgb = [122.782, 117.001, 104.298];
- var normalized = ops_1.normalize(batchTensor, meanRgb).div(tf.scalar(256));
- var out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2]));
- out = reductionBlock(out, params.entry_flow.reduction_block_0, false);
- out = reductionBlock(out, params.entry_flow.reduction_block_1);
- utils_1.range(_this._numMainBlocks, 0, 1).forEach(function (idx) {
- out = mainBlock(out, params.middle_flow["main_block_" + idx]);
- });
- out = reductionBlock(out, params.exit_flow.reduction_block);
- out = tf.relu(common_1.depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1]));
- return out;
- });
- };
- TinyXception.prototype.forward = function (input) {
- return tslib_1.__awaiter(this, void 0, void 0, function () {
- var _a;
- return tslib_1.__generator(this, function (_b) {
- switch (_b.label) {
- case 0:
- _a = this.forwardInput;
- return [4 /*yield*/, dom_1.toNetInput(input)];
- case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
- }
- });
- });
- };
- TinyXception.prototype.getDefaultModelName = function () {
- return 'tiny_xception_model';
- };
- TinyXception.prototype.extractParamsFromWeigthMap = function (weightMap) {
- return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(weightMap, this._numMainBlocks);
- };
- TinyXception.prototype.extractParams = function (weights) {
- return extractParams_1.extractParams(weights, this._numMainBlocks);
- };
- return TinyXception;
- }(NeuralNetwork_1.NeuralNetwork));
- exports.TinyXception = TinyXception;
- //# sourceMappingURL=TinyXception.js.map
|