NetInput.d.ts 1.4 KB

12345678910111213141516171819202122232425262728293031323334
  1. import * as tf from '@tensorflow/tfjs-core';
  2. import { Dimensions } from '../classes/Dimensions';
  3. import { TResolvedNetInput } from './types';
  4. export declare class NetInput {
  5. private _imageTensors;
  6. private _canvases;
  7. private _batchSize;
  8. private _treatAsBatchInput;
  9. private _inputDimensions;
  10. private _inputSize;
  11. constructor(inputs: Array<TResolvedNetInput>, treatAsBatchInput?: boolean);
  12. get imageTensors(): Array<tf.Tensor3D | tf.Tensor4D>;
  13. get canvases(): HTMLCanvasElement[];
  14. get isBatchInput(): boolean;
  15. get batchSize(): number;
  16. get inputDimensions(): number[][];
  17. get inputSize(): number | undefined;
  18. get reshapedInputDimensions(): Dimensions[];
  19. getInput(batchIdx: number): tf.Tensor3D | tf.Tensor4D | HTMLCanvasElement;
  20. getInputDimensions(batchIdx: number): number[];
  21. getInputHeight(batchIdx: number): number;
  22. getInputWidth(batchIdx: number): number;
  23. getReshapedInputDimensions(batchIdx: number): Dimensions;
  24. /**
  25. * Create a batch tensor from all input canvases and tensors
  26. * with size [batchSize, inputSize, inputSize, 3].
  27. *
  28. * @param inputSize Height and width of the tensor.
  29. * @param isCenterImage (optional, default: false) If true, add an equal amount of padding on
  30. * both sides of the minor dimension oof the image.
  31. * @returns The batch tensor.
  32. */
  33. toBatchTensor(inputSize: number, isCenterInputs?: boolean): tf.Tensor4D;
  34. }