12345678910111213141516171819202122232425262728293031323334 |
- import * as tf from '@tensorflow/tfjs-core';
- import { Dimensions } from '../classes/Dimensions';
- import { TResolvedNetInput } from './types';
- export declare class NetInput {
- private _imageTensors;
- private _canvases;
- private _batchSize;
- private _treatAsBatchInput;
- private _inputDimensions;
- private _inputSize;
- constructor(inputs: Array<TResolvedNetInput>, treatAsBatchInput?: boolean);
- get imageTensors(): Array<tf.Tensor3D | tf.Tensor4D>;
- get canvases(): HTMLCanvasElement[];
- get isBatchInput(): boolean;
- get batchSize(): number;
- get inputDimensions(): number[][];
- get inputSize(): number | undefined;
- get reshapedInputDimensions(): Dimensions[];
- getInput(batchIdx: number): tf.Tensor3D | tf.Tensor4D | HTMLCanvasElement;
- getInputDimensions(batchIdx: number): number[];
- getInputHeight(batchIdx: number): number;
- getInputWidth(batchIdx: number): number;
- getReshapedInputDimensions(batchIdx: number): Dimensions;
- /**
- * Create a batch tensor from all input canvases and tensors
- * with size [batchSize, inputSize, inputSize, 3].
- *
- * @param inputSize Height and width of the tensor.
- * @param isCenterImage (optional, default: false) If true, add an equal amount of padding on
- * both sides of the minor dimension oof the image.
- * @returns The batch tensor.
- */
- toBatchTensor(inputSize: number, isCenterInputs?: boolean): tf.Tensor4D;
- }
|