1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import { __awaiter, __generator } from "tslib";
- import { isTensor3D, isTensor4D } from '../utils';
- import { awaitMediaLoaded } from './awaitMediaLoaded';
- import { isMediaElement } from './isMediaElement';
- import { NetInput } from './NetInput';
- import { resolveInput } from './resolveInput';
- /**
- * Validates the input to make sure, they are valid net inputs and awaits all media elements
- * to be finished loading.
- *
- * @param input The input, which can be a media element or an array of different media elements.
- * @returns A NetInput instance, which can be passed into one of the neural networks.
- */
- export function toNetInput(inputs) {
- return __awaiter(this, void 0, void 0, function () {
- var inputArgArray, getIdxHint, inputArray;
- return __generator(this, function (_a) {
- switch (_a.label) {
- case 0:
- if (inputs instanceof NetInput) {
- return [2 /*return*/, inputs];
- }
- inputArgArray = Array.isArray(inputs)
- ? inputs
- : [inputs];
- if (!inputArgArray.length) {
- throw new Error('toNetInput - empty array passed as input');
- }
- getIdxHint = function (idx) { return Array.isArray(inputs) ? " at input index " + idx + ":" : ''; };
- inputArray = inputArgArray.map(resolveInput);
- inputArray.forEach(function (input, i) {
- if (!isMediaElement(input) && !isTensor3D(input) && !isTensor4D(input)) {
- if (typeof inputArgArray[i] === 'string') {
- throw new Error("toNetInput -" + getIdxHint(i) + " string passed, but could not resolve HTMLElement for element id " + inputArgArray[i]);
- }
- throw new Error("toNetInput -" + getIdxHint(i) + " expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id");
- }
- if (isTensor4D(input)) {
- // if tf.Tensor4D is passed in the input array, the batch size has to be 1
- var batchSize = input.shape[0];
- if (batchSize !== 1) {
- throw new Error("toNetInput -" + getIdxHint(i) + " tf.Tensor4D with batchSize " + batchSize + " passed, but not supported in input array");
- }
- }
- });
- // wait for all media elements being loaded
- return [4 /*yield*/, Promise.all(inputArray.map(function (input) { return isMediaElement(input) && awaitMediaLoaded(input); }))];
- case 1:
- // wait for all media elements being loaded
- _a.sent();
- return [2 /*return*/, new NetInput(inputArray, Array.isArray(inputs))];
- }
- });
- });
- }
- //# sourceMappingURL=toNetInput.js.map
|