12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- import { __awaiter, __extends, __generator } from "tslib";
- import * as tf from '@tensorflow/tfjs-core';
- import { toNetInput } from '../dom';
- import { NeuralNetwork } from '../NeuralNetwork';
- import { normalize } from '../ops';
- import { convDown } from './convLayer';
- import { extractParams } from './extractParams';
- import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
- import { residual, residualDown } from './residualLayer';
- var FaceRecognitionNet = /** @class */ (function (_super) {
- __extends(FaceRecognitionNet, _super);
- function FaceRecognitionNet() {
- return _super.call(this, 'FaceRecognitionNet') || this;
- }
- FaceRecognitionNet.prototype.forwardInput = function (input) {
- var params = this.params;
- if (!params) {
- throw new Error('FaceRecognitionNet - load model before inference');
- }
- return tf.tidy(function () {
- var batchTensor = input.toBatchTensor(150, true).toFloat();
- var meanRgb = [122.782, 117.001, 104.298];
- var normalized = normalize(batchTensor, meanRgb).div(tf.scalar(256));
- var out = convDown(normalized, params.conv32_down);
- out = tf.maxPool(out, 3, 2, 'valid');
- out = residual(out, params.conv32_1);
- out = residual(out, params.conv32_2);
- out = residual(out, params.conv32_3);
- out = residualDown(out, params.conv64_down);
- out = residual(out, params.conv64_1);
- out = residual(out, params.conv64_2);
- out = residual(out, params.conv64_3);
- out = residualDown(out, params.conv128_down);
- out = residual(out, params.conv128_1);
- out = residual(out, params.conv128_2);
- out = residualDown(out, params.conv256_down);
- out = residual(out, params.conv256_1);
- out = residual(out, params.conv256_2);
- out = residualDown(out, params.conv256_down_out);
- var globalAvg = out.mean([1, 2]);
- var fullyConnected = tf.matMul(globalAvg, params.fc);
- return fullyConnected;
- });
- };
- FaceRecognitionNet.prototype.forward = function (input) {
- return __awaiter(this, void 0, void 0, function () {
- var _a;
- return __generator(this, function (_b) {
- switch (_b.label) {
- case 0:
- _a = this.forwardInput;
- return [4 /*yield*/, toNetInput(input)];
- case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
- }
- });
- });
- };
- FaceRecognitionNet.prototype.computeFaceDescriptor = function (input) {
- return __awaiter(this, void 0, void 0, function () {
- var netInput, faceDescriptorTensors, faceDescriptorsForBatch;
- var _this = this;
- return __generator(this, function (_a) {
- switch (_a.label) {
- case 0: return [4 /*yield*/, toNetInput(input)];
- case 1:
- netInput = _a.sent();
- faceDescriptorTensors = tf.tidy(function () { return tf.unstack(_this.forwardInput(netInput)); });
- return [4 /*yield*/, Promise.all(faceDescriptorTensors.map(function (t) { return t.data(); }))];
- case 2:
- faceDescriptorsForBatch = _a.sent();
- faceDescriptorTensors.forEach(function (t) { return t.dispose(); });
- return [2 /*return*/, netInput.isBatchInput
- ? faceDescriptorsForBatch
- : faceDescriptorsForBatch[0]];
- }
- });
- });
- };
- FaceRecognitionNet.prototype.getDefaultModelName = function () {
- return 'face_recognition_model';
- };
- FaceRecognitionNet.prototype.extractParamsFromWeigthMap = function (weightMap) {
- return extractParamsFromWeigthMap(weightMap);
- };
- FaceRecognitionNet.prototype.extractParams = function (weights) {
- return extractParams(weights);
- };
- return FaceRecognitionNet;
- }(NeuralNetwork));
- export { FaceRecognitionNet };
- //# sourceMappingURL=FaceRecognitionNet.js.map
|