TinyYolov2Base.d.ts 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142
  1. import * as tf from '@tensorflow/tfjs-core';
  2. import { BoundingBox } from '../classes/BoundingBox';
  3. import { Dimensions } from '../classes/Dimensions';
  4. import { ObjectDetection } from '../classes/ObjectDetection';
  5. import { NetInput } from '../dom/NetInput';
  6. import { TNetInput } from '../dom/types';
  7. import { NeuralNetwork } from '../NeuralNetwork';
  8. import { TinyYolov2Config } from './config';
  9. import { ITinyYolov2Options } from './TinyYolov2Options';
  10. import { DefaultTinyYolov2NetParams, MobilenetParams, TinyYolov2NetParams } from './types';
  11. export declare class TinyYolov2Base extends NeuralNetwork<TinyYolov2NetParams> {
  12. static DEFAULT_FILTER_SIZES: number[];
  13. private _config;
  14. constructor(config: TinyYolov2Config);
  15. get config(): TinyYolov2Config;
  16. get withClassScores(): boolean;
  17. get boxEncodingSize(): number;
  18. runTinyYolov2(x: tf.Tensor4D, params: DefaultTinyYolov2NetParams): tf.Tensor4D;
  19. runMobilenet(x: tf.Tensor4D, params: MobilenetParams): tf.Tensor4D;
  20. forwardInput(input: NetInput, inputSize: number): tf.Tensor4D;
  21. forward(input: TNetInput, inputSize: number): Promise<tf.Tensor4D>;
  22. detect(input: TNetInput, forwardParams?: ITinyYolov2Options): Promise<ObjectDetection[]>;
  23. protected getDefaultModelName(): string;
  24. protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap): {
  25. params: TinyYolov2NetParams;
  26. paramMappings: import("../common").ParamMapping[];
  27. };
  28. protected extractParams(weights: Float32Array): {
  29. params: TinyYolov2NetParams;
  30. paramMappings: import("../common").ParamMapping[];
  31. };
  32. protected extractBoxes(outputTensor: tf.Tensor4D, inputBlobDimensions: Dimensions, scoreThreshold?: number): Promise<{
  33. row: number;
  34. col: number;
  35. anchor: number;
  36. box: BoundingBox;
  37. score: number;
  38. classScore: number;
  39. label: number;
  40. }[]>;
  41. private extractPredictedClass;
  42. }