{"ast":null,"code":"\"use strict\";\n\nvar __importDefault = this && this.__importDefault || function (mod) {\n return mod && mod.__esModule ? mod : {\n \"default\": mod\n };\n};\nObject.defineProperty(exports, \"__esModule\", {\n value: true\n});\nvar SymbolMap_js_1 = require(\"../SymbolMap.js\");\nvar PhysicsMethods_js_1 = __importDefault(require(\"./PhysicsMethods.js\"));\nvar TexConstants_js_1 = require(\"../TexConstants.js\");\nvar ParseMethods_js_1 = __importDefault(require(\"../ParseMethods.js\"));\nvar MmlNode_js_1 = require(\"../../../core/MmlTree/MmlNode.js\");\nnew SymbolMap_js_1.CommandMap('Physics-automatic-bracing-macros', {\n 'quantity': 'Quantity',\n 'qty': 'Quantity',\n 'pqty': ['Quantity', '(', ')', true],\n 'bqty': ['Quantity', '[', ']', true],\n 'vqty': ['Quantity', '|', '|', true],\n 'Bqty': ['Quantity', '\\\\{', '\\\\}', true],\n 'absolutevalue': ['Quantity', '|', '|', true],\n 'abs': ['Quantity', '|', '|', true],\n 'norm': ['Quantity', '\\\\|', '\\\\|', true],\n 'evaluated': 'Eval',\n 'eval': 'Eval',\n 'order': ['Quantity', '(', ')', true, 'O', TexConstants_js_1.TexConstant.Variant.CALLIGRAPHIC],\n 'commutator': 'Commutator',\n 'comm': 'Commutator',\n 'anticommutator': ['Commutator', '\\\\{', '\\\\}'],\n 'acomm': ['Commutator', '\\\\{', '\\\\}'],\n 'poissonbracket': ['Commutator', '\\\\{', '\\\\}'],\n 'pb': ['Commutator', '\\\\{', '\\\\}']\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CharacterMap('Physics-vector-mo', ParseMethods_js_1.default.mathchar0mo, {\n dotproduct: ['\\u22C5', {\n mathvariant: TexConstants_js_1.TexConstant.Variant.BOLD\n }],\n vdot: ['\\u22C5', {\n mathvariant: TexConstants_js_1.TexConstant.Variant.BOLD\n }],\n crossproduct: '\\u00D7',\n cross: '\\u00D7',\n cp: '\\u00D7',\n gradientnabla: ['\\u2207', {\n mathvariant: TexConstants_js_1.TexConstant.Variant.BOLD\n }]\n});\nnew SymbolMap_js_1.CharacterMap('Physics-vector-mi', ParseMethods_js_1.default.mathchar0mi, {\n real: ['\\u211C', {\n mathvariant: TexConstants_js_1.TexConstant.Variant.NORMAL\n }],\n imaginary: ['\\u2111', {\n mathvariant: TexConstants_js_1.TexConstant.Variant.NORMAL\n }]\n});\nnew SymbolMap_js_1.CommandMap('Physics-vector-macros', {\n 'vnabla': 'Vnabla',\n 'vectorbold': 'VectorBold',\n 'vb': 'VectorBold',\n 'vectorarrow': ['StarMacro', 1, '\\\\vec{\\\\vb', '{#1}}'],\n 'va': ['StarMacro', 1, '\\\\vec{\\\\vb', '{#1}}'],\n 'vectorunit': ['StarMacro', 1, '\\\\hat{\\\\vb', '{#1}}'],\n 'vu': ['StarMacro', 1, '\\\\hat{\\\\vb', '{#1}}'],\n 'gradient': ['OperatorApplication', '\\\\vnabla', '(', '['],\n 'grad': ['OperatorApplication', '\\\\vnabla', '(', '['],\n 'divergence': ['VectorOperator', '\\\\vnabla\\\\vdot', '(', '['],\n 'div': ['VectorOperator', '\\\\vnabla\\\\vdot', '(', '['],\n 'curl': ['VectorOperator', '\\\\vnabla\\\\crossproduct', '(', '['],\n 'laplacian': ['OperatorApplication', '\\\\nabla^2', '(', '[']\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-expressions-macros', {\n 'sin': 'Expression',\n 'sinh': 'Expression',\n 'arcsin': 'Expression',\n 'asin': 'Expression',\n 'cos': 'Expression',\n 'cosh': 'Expression',\n 'arccos': 'Expression',\n 'acos': 'Expression',\n 'tan': 'Expression',\n 'tanh': 'Expression',\n 'arctan': 'Expression',\n 'atan': 'Expression',\n 'csc': 'Expression',\n 'csch': 'Expression',\n 'arccsc': 'Expression',\n 'acsc': 'Expression',\n 'sec': 'Expression',\n 'sech': 'Expression',\n 'arcsec': 'Expression',\n 'asec': 'Expression',\n 'cot': 'Expression',\n 'coth': 'Expression',\n 'arccot': 'Expression',\n 'acot': 'Expression',\n 'exp': ['Expression', false],\n 'log': 'Expression',\n 'ln': 'Expression',\n 'det': ['Expression', false],\n 'Pr': ['Expression', false],\n 'tr': ['Expression', false],\n 'trace': ['Expression', false, 'tr'],\n 'Tr': ['Expression', false],\n 'Trace': ['Expression', false, 'Tr'],\n 'rank': 'NamedFn',\n 'erf': ['Expression', false],\n 'Residue': ['Macro', '\\\\mathrm{Res}'],\n 'Res': ['OperatorApplication', '\\\\Residue', '(', '[', '{'],\n 'principalvalue': ['OperatorApplication', '{\\\\cal P}'],\n 'pv': ['OperatorApplication', '{\\\\cal P}'],\n 'PV': ['OperatorApplication', '{\\\\rm P.V.}'],\n 'Re': ['OperatorApplication', '\\\\mathrm{Re}', '{'],\n 'Im': ['OperatorApplication', '\\\\mathrm{Im}', '{'],\n 'sine': ['NamedFn', 'sin'],\n 'hypsine': ['NamedFn', 'sinh'],\n 'arcsine': ['NamedFn', 'arcsin'],\n 'asine': ['NamedFn', 'asin'],\n 'cosine': ['NamedFn', 'cos'],\n 'hypcosine': ['NamedFn', 'cosh'],\n 'arccosine': ['NamedFn', 'arccos'],\n 'acosine': ['NamedFn', 'acos'],\n 'tangent': ['NamedFn', 'tan'],\n 'hyptangent': ['NamedFn', 'tanh'],\n 'arctangent': ['NamedFn', 'arctan'],\n 'atangent': ['NamedFn', 'atan'],\n 'cosecant': ['NamedFn', 'csc'],\n 'hypcosecant': ['NamedFn', 'csch'],\n 'arccosecant': ['NamedFn', 'arccsc'],\n 'acosecant': ['NamedFn', 'acsc'],\n 'secant': ['NamedFn', 'sec'],\n 'hypsecant': ['NamedFn', 'sech'],\n 'arcsecant': ['NamedFn', 'arcsec'],\n 'asecant': ['NamedFn', 'asec'],\n 'cotangent': ['NamedFn', 'cot'],\n 'hypcotangent': ['NamedFn', 'coth'],\n 'arccotangent': ['NamedFn', 'arccot'],\n 'acotangent': ['NamedFn', 'acot'],\n 'exponential': ['NamedFn', 'exp'],\n 'logarithm': ['NamedFn', 'log'],\n 'naturallogarithm': ['NamedFn', 'ln'],\n 'determinant': ['NamedFn', 'det'],\n 'Probability': ['NamedFn', 'Pr']\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-quick-quad-macros', {\n 'qqtext': 'Qqtext',\n 'qq': 'Qqtext',\n 'qcomma': ['Macro', '\\\\qqtext*{,}'],\n 'qc': ['Macro', '\\\\qqtext*{,}'],\n 'qcc': ['Qqtext', 'c.c.'],\n 'qif': ['Qqtext', 'if'],\n 'qthen': ['Qqtext', 'then'],\n 'qelse': ['Qqtext', 'else'],\n 'qotherwise': ['Qqtext', 'otherwise'],\n 'qunless': ['Qqtext', 'unless'],\n 'qgiven': ['Qqtext', 'given'],\n 'qusing': ['Qqtext', 'using'],\n 'qassume': ['Qqtext', 'assume'],\n 'qsince': ['Qqtext', 'since'],\n 'qlet': ['Qqtext', 'let'],\n 'qfor': ['Qqtext', 'for'],\n 'qall': ['Qqtext', 'all'],\n 'qeven': ['Qqtext', 'even'],\n 'qodd': ['Qqtext', 'odd'],\n 'qinteger': ['Qqtext', 'integer'],\n 'qand': ['Qqtext', 'and'],\n 'qor': ['Qqtext', 'or'],\n 'qas': ['Qqtext', 'as'],\n 'qin': ['Qqtext', 'in']\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-derivative-macros', {\n 'diffd': 'DiffD',\n 'flatfrac': ['Macro', '\\\\left.#1\\\\middle/#2\\\\right.', 2],\n 'differential': ['Differential', '\\\\diffd'],\n 'dd': ['Differential', '\\\\diffd'],\n 'variation': ['Differential', '\\\\delta'],\n 'var': ['Differential', '\\\\delta'],\n 'derivative': ['Derivative', 2, '\\\\diffd'],\n 'dv': ['Derivative', 2, '\\\\diffd'],\n 'partialderivative': ['Derivative', 3, '\\\\partial'],\n 'pderivative': ['Derivative', 3, '\\\\partial'],\n 'pdv': ['Derivative', 3, '\\\\partial'],\n 'functionalderivative': ['Derivative', 2, '\\\\delta'],\n 'fderivative': ['Derivative', 2, '\\\\delta'],\n 'fdv': ['Derivative', 2, '\\\\delta']\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-bra-ket-macros', {\n 'bra': 'Bra',\n 'ket': 'Ket',\n 'innerproduct': 'BraKet',\n 'ip': 'BraKet',\n 'braket': 'BraKet',\n 'outerproduct': 'KetBra',\n 'dyad': 'KetBra',\n 'ketbra': 'KetBra',\n 'op': 'KetBra',\n 'expectationvalue': 'Expectation',\n 'expval': 'Expectation',\n 'ev': 'Expectation',\n 'matrixelement': 'MatrixElement',\n 'matrixel': 'MatrixElement',\n 'mel': 'MatrixElement'\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-matrix-macros', {\n 'matrixquantity': 'MatrixQuantity',\n 'mqty': 'MatrixQuantity',\n 'pmqty': ['Macro', '\\\\mqty(#1)', 1],\n 'Pmqty': ['Macro', '\\\\mqty*(#1)', 1],\n 'bmqty': ['Macro', '\\\\mqty[#1]', 1],\n 'vmqty': ['Macro', '\\\\mqty|#1|', 1],\n 'smallmatrixquantity': ['MatrixQuantity', true],\n 'smqty': ['MatrixQuantity', true],\n 'spmqty': ['Macro', '\\\\smqty(#1)', 1],\n 'sPmqty': ['Macro', '\\\\smqty*(#1)', 1],\n 'sbmqty': ['Macro', '\\\\smqty[#1]', 1],\n 'svmqty': ['Macro', '\\\\smqty|#1|', 1],\n 'matrixdeterminant': ['Macro', '\\\\vmqty{#1}', 1],\n 'mdet': ['Macro', '\\\\vmqty{#1}', 1],\n 'smdet': ['Macro', '\\\\svmqty{#1}', 1],\n 'identitymatrix': 'IdentityMatrix',\n 'imat': 'IdentityMatrix',\n 'xmatrix': 'XMatrix',\n 'xmat': 'XMatrix',\n 'zeromatrix': ['Macro', '\\\\xmat{0}{#1}{#2}', 2],\n 'zmat': ['Macro', '\\\\xmat{0}{#1}{#2}', 2],\n 'paulimatrix': 'PauliMatrix',\n 'pmat': 'PauliMatrix',\n 'diagonalmatrix': 'DiagonalMatrix',\n 'dmat': 'DiagonalMatrix',\n 'antidiagonalmatrix': ['DiagonalMatrix', true],\n 'admat': ['DiagonalMatrix', true]\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.EnvironmentMap('Physics-aux-envs', ParseMethods_js_1.default.environment, {\n smallmatrix: ['Array', null, null, null, 'c', '0.333em', '.2em', 'S', 1]\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.MacroMap('Physics-characters', {\n '|': ['AutoClose', MmlNode_js_1.TEXCLASS.ORD],\n ')': 'AutoClose',\n ']': 'AutoClose'\n}, PhysicsMethods_js_1.default);","map":{"version":3,"names":["__importDefault","mod","__esModule","Object","defineProperty","exports","value","SymbolMap_js_1","require","PhysicsMethods_js_1","TexConstants_js_1","ParseMethods_js_1","MmlNode_js_1","CommandMap","TexConstant","Variant","CALLIGRAPHIC","default","CharacterMap","mathchar0mo","dotproduct","mathvariant","BOLD","vdot","crossproduct","cross","cp","gradientnabla","mathchar0mi","real","NORMAL","imaginary","EnvironmentMap","environment","smallmatrix","MacroMap","TEXCLASS","ORD"],"sources":["F:/workspace/202226701027/huinongbao-app/node_modules/mathjax-full/js/input/tex/physics/PhysicsMappings.js"],"sourcesContent":["\"use strict\";\nvar __importDefault = (this && this.__importDefault) || function (mod) {\n return (mod && mod.__esModule) ? mod : { \"default\": mod };\n};\nObject.defineProperty(exports, \"__esModule\", { value: true });\nvar SymbolMap_js_1 = require(\"../SymbolMap.js\");\nvar PhysicsMethods_js_1 = __importDefault(require(\"./PhysicsMethods.js\"));\nvar TexConstants_js_1 = require(\"../TexConstants.js\");\nvar ParseMethods_js_1 = __importDefault(require(\"../ParseMethods.js\"));\nvar MmlNode_js_1 = require(\"../../../core/MmlTree/MmlNode.js\");\nnew SymbolMap_js_1.CommandMap('Physics-automatic-bracing-macros', {\n 'quantity': 'Quantity',\n 'qty': 'Quantity',\n 'pqty': ['Quantity', '(', ')', true],\n 'bqty': ['Quantity', '[', ']', true],\n 'vqty': ['Quantity', '|', '|', true],\n 'Bqty': ['Quantity', '\\\\{', '\\\\}', true],\n 'absolutevalue': ['Quantity', '|', '|', true],\n 'abs': ['Quantity', '|', '|', true],\n 'norm': ['Quantity', '\\\\|', '\\\\|', true],\n 'evaluated': 'Eval',\n 'eval': 'Eval',\n 'order': ['Quantity', '(', ')', true, 'O',\n TexConstants_js_1.TexConstant.Variant.CALLIGRAPHIC],\n 'commutator': 'Commutator',\n 'comm': 'Commutator',\n 'anticommutator': ['Commutator', '\\\\{', '\\\\}'],\n 'acomm': ['Commutator', '\\\\{', '\\\\}'],\n 'poissonbracket': ['Commutator', '\\\\{', '\\\\}'],\n 'pb': ['Commutator', '\\\\{', '\\\\}']\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CharacterMap('Physics-vector-mo', ParseMethods_js_1.default.mathchar0mo, {\n dotproduct: ['\\u22C5', { mathvariant: TexConstants_js_1.TexConstant.Variant.BOLD }],\n vdot: ['\\u22C5', { mathvariant: TexConstants_js_1.TexConstant.Variant.BOLD }],\n crossproduct: '\\u00D7',\n cross: '\\u00D7',\n cp: '\\u00D7',\n gradientnabla: ['\\u2207', { mathvariant: TexConstants_js_1.TexConstant.Variant.BOLD }]\n});\nnew SymbolMap_js_1.CharacterMap('Physics-vector-mi', ParseMethods_js_1.default.mathchar0mi, {\n real: ['\\u211C', { mathvariant: TexConstants_js_1.TexConstant.Variant.NORMAL }],\n imaginary: ['\\u2111', { mathvariant: TexConstants_js_1.TexConstant.Variant.NORMAL }]\n});\nnew SymbolMap_js_1.CommandMap('Physics-vector-macros', {\n 'vnabla': 'Vnabla',\n 'vectorbold': 'VectorBold',\n 'vb': 'VectorBold',\n 'vectorarrow': ['StarMacro', 1, '\\\\vec{\\\\vb', '{#1}}'],\n 'va': ['StarMacro', 1, '\\\\vec{\\\\vb', '{#1}}'],\n 'vectorunit': ['StarMacro', 1, '\\\\hat{\\\\vb', '{#1}}'],\n 'vu': ['StarMacro', 1, '\\\\hat{\\\\vb', '{#1}}'],\n 'gradient': ['OperatorApplication', '\\\\vnabla', '(', '['],\n 'grad': ['OperatorApplication', '\\\\vnabla', '(', '['],\n 'divergence': ['VectorOperator', '\\\\vnabla\\\\vdot', '(', '['],\n 'div': ['VectorOperator', '\\\\vnabla\\\\vdot', '(', '['],\n 'curl': ['VectorOperator', '\\\\vnabla\\\\crossproduct', '(', '['],\n 'laplacian': ['OperatorApplication', '\\\\nabla^2', '(', '['],\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-expressions-macros', {\n 'sin': 'Expression',\n 'sinh': 'Expression',\n 'arcsin': 'Expression',\n 'asin': 'Expression',\n 'cos': 'Expression',\n 'cosh': 'Expression',\n 'arccos': 'Expression',\n 'acos': 'Expression',\n 'tan': 'Expression',\n 'tanh': 'Expression',\n 'arctan': 'Expression',\n 'atan': 'Expression',\n 'csc': 'Expression',\n 'csch': 'Expression',\n 'arccsc': 'Expression',\n 'acsc': 'Expression',\n 'sec': 'Expression',\n 'sech': 'Expression',\n 'arcsec': 'Expression',\n 'asec': 'Expression',\n 'cot': 'Expression',\n 'coth': 'Expression',\n 'arccot': 'Expression',\n 'acot': 'Expression',\n 'exp': ['Expression', false],\n 'log': 'Expression',\n 'ln': 'Expression',\n 'det': ['Expression', false],\n 'Pr': ['Expression', false],\n 'tr': ['Expression', false],\n 'trace': ['Expression', false, 'tr'],\n 'Tr': ['Expression', false],\n 'Trace': ['Expression', false, 'Tr'],\n 'rank': 'NamedFn',\n 'erf': ['Expression', false],\n 'Residue': ['Macro', '\\\\mathrm{Res}'],\n 'Res': ['OperatorApplication', '\\\\Residue', '(', '[', '{'],\n 'principalvalue': ['OperatorApplication', '{\\\\cal P}'],\n 'pv': ['OperatorApplication', '{\\\\cal P}'],\n 'PV': ['OperatorApplication', '{\\\\rm P.V.}'],\n 'Re': ['OperatorApplication', '\\\\mathrm{Re}', '{'],\n 'Im': ['OperatorApplication', '\\\\mathrm{Im}', '{'],\n 'sine': ['NamedFn', 'sin'],\n 'hypsine': ['NamedFn', 'sinh'],\n 'arcsine': ['NamedFn', 'arcsin'],\n 'asine': ['NamedFn', 'asin'],\n 'cosine': ['NamedFn', 'cos'],\n 'hypcosine': ['NamedFn', 'cosh'],\n 'arccosine': ['NamedFn', 'arccos'],\n 'acosine': ['NamedFn', 'acos'],\n 'tangent': ['NamedFn', 'tan'],\n 'hyptangent': ['NamedFn', 'tanh'],\n 'arctangent': ['NamedFn', 'arctan'],\n 'atangent': ['NamedFn', 'atan'],\n 'cosecant': ['NamedFn', 'csc'],\n 'hypcosecant': ['NamedFn', 'csch'],\n 'arccosecant': ['NamedFn', 'arccsc'],\n 'acosecant': ['NamedFn', 'acsc'],\n 'secant': ['NamedFn', 'sec'],\n 'hypsecant': ['NamedFn', 'sech'],\n 'arcsecant': ['NamedFn', 'arcsec'],\n 'asecant': ['NamedFn', 'asec'],\n 'cotangent': ['NamedFn', 'cot'],\n 'hypcotangent': ['NamedFn', 'coth'],\n 'arccotangent': ['NamedFn', 'arccot'],\n 'acotangent': ['NamedFn', 'acot'],\n 'exponential': ['NamedFn', 'exp'],\n 'logarithm': ['NamedFn', 'log'],\n 'naturallogarithm': ['NamedFn', 'ln'],\n 'determinant': ['NamedFn', 'det'],\n 'Probability': ['NamedFn', 'Pr'],\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-quick-quad-macros', {\n 'qqtext': 'Qqtext',\n 'qq': 'Qqtext',\n 'qcomma': ['Macro', '\\\\qqtext*{,}'],\n 'qc': ['Macro', '\\\\qqtext*{,}'],\n 'qcc': ['Qqtext', 'c.c.'],\n 'qif': ['Qqtext', 'if'],\n 'qthen': ['Qqtext', 'then'],\n 'qelse': ['Qqtext', 'else'],\n 'qotherwise': ['Qqtext', 'otherwise'],\n 'qunless': ['Qqtext', 'unless'],\n 'qgiven': ['Qqtext', 'given'],\n 'qusing': ['Qqtext', 'using'],\n 'qassume': ['Qqtext', 'assume'],\n 'qsince': ['Qqtext', 'since'],\n 'qlet': ['Qqtext', 'let'],\n 'qfor': ['Qqtext', 'for'],\n 'qall': ['Qqtext', 'all'],\n 'qeven': ['Qqtext', 'even'],\n 'qodd': ['Qqtext', 'odd'],\n 'qinteger': ['Qqtext', 'integer'],\n 'qand': ['Qqtext', 'and'],\n 'qor': ['Qqtext', 'or'],\n 'qas': ['Qqtext', 'as'],\n 'qin': ['Qqtext', 'in'],\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-derivative-macros', {\n 'diffd': 'DiffD',\n 'flatfrac': ['Macro', '\\\\left.#1\\\\middle/#2\\\\right.', 2],\n 'differential': ['Differential', '\\\\diffd'],\n 'dd': ['Differential', '\\\\diffd'],\n 'variation': ['Differential', '\\\\delta'],\n 'var': ['Differential', '\\\\delta'],\n 'derivative': ['Derivative', 2, '\\\\diffd'],\n 'dv': ['Derivative', 2, '\\\\diffd'],\n 'partialderivative': ['Derivative', 3, '\\\\partial'],\n 'pderivative': ['Derivative', 3, '\\\\partial'],\n 'pdv': ['Derivative', 3, '\\\\partial'],\n 'functionalderivative': ['Derivative', 2, '\\\\delta'],\n 'fderivative': ['Derivative', 2, '\\\\delta'],\n 'fdv': ['Derivative', 2, '\\\\delta'],\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-bra-ket-macros', {\n 'bra': 'Bra',\n 'ket': 'Ket',\n 'innerproduct': 'BraKet',\n 'ip': 'BraKet',\n 'braket': 'BraKet',\n 'outerproduct': 'KetBra',\n 'dyad': 'KetBra',\n 'ketbra': 'KetBra',\n 'op': 'KetBra',\n 'expectationvalue': 'Expectation',\n 'expval': 'Expectation',\n 'ev': 'Expectation',\n 'matrixelement': 'MatrixElement',\n 'matrixel': 'MatrixElement',\n 'mel': 'MatrixElement',\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.CommandMap('Physics-matrix-macros', {\n 'matrixquantity': 'MatrixQuantity',\n 'mqty': 'MatrixQuantity',\n 'pmqty': ['Macro', '\\\\mqty(#1)', 1],\n 'Pmqty': ['Macro', '\\\\mqty*(#1)', 1],\n 'bmqty': ['Macro', '\\\\mqty[#1]', 1],\n 'vmqty': ['Macro', '\\\\mqty|#1|', 1],\n 'smallmatrixquantity': ['MatrixQuantity', true],\n 'smqty': ['MatrixQuantity', true],\n 'spmqty': ['Macro', '\\\\smqty(#1)', 1],\n 'sPmqty': ['Macro', '\\\\smqty*(#1)', 1],\n 'sbmqty': ['Macro', '\\\\smqty[#1]', 1],\n 'svmqty': ['Macro', '\\\\smqty|#1|', 1],\n 'matrixdeterminant': ['Macro', '\\\\vmqty{#1}', 1],\n 'mdet': ['Macro', '\\\\vmqty{#1}', 1],\n 'smdet': ['Macro', '\\\\svmqty{#1}', 1],\n 'identitymatrix': 'IdentityMatrix',\n 'imat': 'IdentityMatrix',\n 'xmatrix': 'XMatrix',\n 'xmat': 'XMatrix',\n 'zeromatrix': ['Macro', '\\\\xmat{0}{#1}{#2}', 2],\n 'zmat': ['Macro', '\\\\xmat{0}{#1}{#2}', 2],\n 'paulimatrix': 'PauliMatrix',\n 'pmat': 'PauliMatrix',\n 'diagonalmatrix': 'DiagonalMatrix',\n 'dmat': 'DiagonalMatrix',\n 'antidiagonalmatrix': ['DiagonalMatrix', true],\n 'admat': ['DiagonalMatrix', true]\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.EnvironmentMap('Physics-aux-envs', ParseMethods_js_1.default.environment, {\n smallmatrix: ['Array', null, null, null, 'c', '0.333em', '.2em', 'S', 1]\n}, PhysicsMethods_js_1.default);\nnew SymbolMap_js_1.MacroMap('Physics-characters', {\n '|': ['AutoClose', MmlNode_js_1.TEXCLASS.ORD],\n ')': 'AutoClose',\n ']': 'AutoClose'\n}, PhysicsMethods_js_1.default);\n"],"mappings":"AAAA,YAAY;;AACZ,IAAIA,eAAe,GAAI,IAAI,IAAI,IAAI,CAACA,eAAe,IAAK,UAAUC,GAAG,EAAE;EACnE,OAAQA,GAAG,IAAIA,GAAG,CAACC,UAAU,GAAID,GAAG,GAAG;IAAE,SAAS,EAAEA;EAAI,CAAC;AAC7D,CAAC;AACDE,MAAM,CAACC,cAAc,CAACC,OAAO,EAAE,YAAY,EAAE;EAAEC,KAAK,EAAE;AAAK,CAAC,CAAC;AAC7D,IAAIC,cAAc,GAAGC,OAAO,CAAC,iBAAiB,CAAC;AAC/C,IAAIC,mBAAmB,GAAGT,eAAe,CAACQ,OAAO,CAAC,qBAAqB,CAAC,CAAC;AACzE,IAAIE,iBAAiB,GAAGF,OAAO,CAAC,oBAAoB,CAAC;AACrD,IAAIG,iBAAiB,GAAGX,eAAe,CAACQ,OAAO,CAAC,oBAAoB,CAAC,CAAC;AACtE,IAAII,YAAY,GAAGJ,OAAO,CAAC,kCAAkC,CAAC;AAC9D,IAAID,cAAc,CAACM,UAAU,CAAC,kCAAkC,EAAE;EAC9D,UAAU,EAAE,UAAU;EACtB,KAAK,EAAE,UAAU;EACjB,MAAM,EAAE,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC;EACpC,MAAM,EAAE,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC;EACpC,MAAM,EAAE,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC;EACpC,MAAM,EAAE,CAAC,UAAU,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC;EACxC,eAAe,EAAE,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC;EAC7C,KAAK,EAAE,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC;EACnC,MAAM,EAAE,CAAC,UAAU,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC;EACxC,WAAW,EAAE,MAAM;EACnB,MAAM,EAAE,MAAM;EACd,OAAO,EAAE,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,EAAE,GAAG,EACrCH,iBAAiB,CAACI,WAAW,CAACC,OAAO,CAACC,YAAY,CAAC;EACvD,YAAY,EAAE,YAAY;EAC1B,MAAM,EAAE,YAAY;EACpB,gBAAgB,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,KAAK,CAAC;EAC9C,OAAO,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,KAAK,CAAC;EACrC,gBAAgB,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,KAAK,CAAC;EAC9C,IAAI,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,KAAK;AACrC,CAAC,EAAEP,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAACW,YAAY,CAAC,mBAAmB,EAAEP,iBAAiB,CAACM,OAAO,CAACE,WAAW,EAAE;EACxFC,UAAU,EAAE,CAAC,QAAQ,EAAE;IAAEC,WAAW,EAAEX,iBAAiB,CAACI,WAAW,CAACC,OAAO,CAACO;EAAK,CAAC,CAAC;EACnFC,IAAI,EAAE,CAAC,QAAQ,EAAE;IAAEF,WAAW,EAAEX,iBAAiB,CAACI,WAAW,CAACC,OAAO,CAACO;EAAK,CAAC,CAAC;EAC7EE,YAAY,EAAE,QAAQ;EACtBC,KAAK,EAAE,QAAQ;EACfC,EAAE,EAAE,QAAQ;EACZC,aAAa,EAAE,CAAC,QAAQ,EAAE;IAAEN,WAAW,EAAEX,iBAAiB,CAACI,WAAW,CAACC,OAAO,CAACO;EAAK,CAAC;AACzF,CAAC,CAAC;AACF,IAAIf,cAAc,CAACW,YAAY,CAAC,mBAAmB,EAAEP,iBAAiB,CAACM,OAAO,CAACW,WAAW,EAAE;EACxFC,IAAI,EAAE,CAAC,QAAQ,EAAE;IAAER,WAAW,EAAEX,iBAAiB,CAACI,WAAW,CAACC,OAAO,CAACe;EAAO,CAAC,CAAC;EAC/EC,SAAS,EAAE,CAAC,QAAQ,EAAE;IAAEV,WAAW,EAAEX,iBAAiB,CAACI,WAAW,CAACC,OAAO,CAACe;EAAO,CAAC;AACvF,CAAC,CAAC;AACF,IAAIvB,cAAc,CAACM,UAAU,CAAC,uBAAuB,EAAE;EACnD,QAAQ,EAAE,QAAQ;EAClB,YAAY,EAAE,YAAY;EAC1B,IAAI,EAAE,YAAY;EAClB,aAAa,EAAE,CAAC,WAAW,EAAE,CAAC,EAAE,YAAY,EAAE,OAAO,CAAC;EACtD,IAAI,EAAE,CAAC,WAAW,EAAE,CAAC,EAAE,YAAY,EAAE,OAAO,CAAC;EAC7C,YAAY,EAAE,CAAC,WAAW,EAAE,CAAC,EAAE,YAAY,EAAE,OAAO,CAAC;EACrD,IAAI,EAAE,CAAC,WAAW,EAAE,CAAC,EAAE,YAAY,EAAE,OAAO,CAAC;EAC7C,UAAU,EAAE,CAAC,qBAAqB,EAAE,UAAU,EAAE,GAAG,EAAE,GAAG,CAAC;EACzD,MAAM,EAAE,CAAC,qBAAqB,EAAE,UAAU,EAAE,GAAG,EAAE,GAAG,CAAC;EACrD,YAAY,EAAE,CAAC,gBAAgB,EAAE,gBAAgB,EAAE,GAAG,EAAE,GAAG,CAAC;EAC5D,KAAK,EAAE,CAAC,gBAAgB,EAAE,gBAAgB,EAAE,GAAG,EAAE,GAAG,CAAC;EACrD,MAAM,EAAE,CAAC,gBAAgB,EAAE,wBAAwB,EAAE,GAAG,EAAE,GAAG,CAAC;EAC9D,WAAW,EAAE,CAAC,qBAAqB,EAAE,WAAW,EAAE,GAAG,EAAE,GAAG;AAC9D,CAAC,EAAEJ,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAACM,UAAU,CAAC,4BAA4B,EAAE;EACxD,KAAK,EAAE,YAAY;EACnB,MAAM,EAAE,YAAY;EACpB,QAAQ,EAAE,YAAY;EACtB,MAAM,EAAE,YAAY;EACpB,KAAK,EAAE,YAAY;EACnB,MAAM,EAAE,YAAY;EACpB,QAAQ,EAAE,YAAY;EACtB,MAAM,EAAE,YAAY;EACpB,KAAK,EAAE,YAAY;EACnB,MAAM,EAAE,YAAY;EACpB,QAAQ,EAAE,YAAY;EACtB,MAAM,EAAE,YAAY;EACpB,KAAK,EAAE,YAAY;EACnB,MAAM,EAAE,YAAY;EACpB,QAAQ,EAAE,YAAY;EACtB,MAAM,EAAE,YAAY;EACpB,KAAK,EAAE,YAAY;EACnB,MAAM,EAAE,YAAY;EACpB,QAAQ,EAAE,YAAY;EACtB,MAAM,EAAE,YAAY;EACpB,KAAK,EAAE,YAAY;EACnB,MAAM,EAAE,YAAY;EACpB,QAAQ,EAAE,YAAY;EACtB,MAAM,EAAE,YAAY;EACpB,KAAK,EAAE,CAAC,YAAY,EAAE,KAAK,CAAC;EAC5B,KAAK,EAAE,YAAY;EACnB,IAAI,EAAE,YAAY;EAClB,KAAK,EAAE,CAAC,YAAY,EAAE,KAAK,CAAC;EAC5B,IAAI,EAAE,CAAC,YAAY,EAAE,KAAK,CAAC;EAC3B,IAAI,EAAE,CAAC,YAAY,EAAE,KAAK,CAAC;EAC3B,OAAO,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,IAAI,CAAC;EACpC,IAAI,EAAE,CAAC,YAAY,EAAE,KAAK,CAAC;EAC3B,OAAO,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,IAAI,CAAC;EACpC,MAAM,EAAE,SAAS;EACjB,KAAK,EAAE,CAAC,YAAY,EAAE,KAAK,CAAC;EAC5B,SAAS,EAAE,CAAC,OAAO,EAAE,eAAe,CAAC;EACrC,KAAK,EAAE,CAAC,qBAAqB,EAAE,WAAW,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC;EAC1D,gBAAgB,EAAE,CAAC,qBAAqB,EAAE,WAAW,CAAC;EACtD,IAAI,EAAE,CAAC,qBAAqB,EAAE,WAAW,CAAC;EAC1C,IAAI,EAAE,CAAC,qBAAqB,EAAE,aAAa,CAAC;EAC5C,IAAI,EAAE,CAAC,qBAAqB,EAAE,cAAc,EAAE,GAAG,CAAC;EAClD,IAAI,EAAE,CAAC,qBAAqB,EAAE,cAAc,EAAE,GAAG,CAAC;EAClD,MAAM,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EAC1B,SAAS,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAC9B,SAAS,EAAE,CAAC,SAAS,EAAE,QAAQ,CAAC;EAChC,OAAO,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAC5B,QAAQ,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EAC5B,WAAW,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAChC,WAAW,EAAE,CAAC,SAAS,EAAE,QAAQ,CAAC;EAClC,SAAS,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAC9B,SAAS,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EAC7B,YAAY,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EACjC,YAAY,EAAE,CAAC,SAAS,EAAE,QAAQ,CAAC;EACnC,UAAU,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAC/B,UAAU,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EAC9B,aAAa,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAClC,aAAa,EAAE,CAAC,SAAS,EAAE,QAAQ,CAAC;EACpC,WAAW,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAChC,QAAQ,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EAC5B,WAAW,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAChC,WAAW,EAAE,CAAC,SAAS,EAAE,QAAQ,CAAC;EAClC,SAAS,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EAC9B,WAAW,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EAC/B,cAAc,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EACnC,cAAc,EAAE,CAAC,SAAS,EAAE,QAAQ,CAAC;EACrC,YAAY,EAAE,CAAC,SAAS,EAAE,MAAM,CAAC;EACjC,aAAa,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EACjC,WAAW,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EAC/B,kBAAkB,EAAE,CAAC,SAAS,EAAE,IAAI,CAAC;EACrC,aAAa,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC;EACjC,aAAa,EAAE,CAAC,SAAS,EAAE,IAAI;AACnC,CAAC,EAAEJ,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAACM,UAAU,CAAC,2BAA2B,EAAE;EACvD,QAAQ,EAAE,QAAQ;EAClB,IAAI,EAAE,QAAQ;EACd,QAAQ,EAAE,CAAC,OAAO,EAAE,cAAc,CAAC;EACnC,IAAI,EAAE,CAAC,OAAO,EAAE,cAAc,CAAC;EAC/B,KAAK,EAAE,CAAC,QAAQ,EAAE,MAAM,CAAC;EACzB,KAAK,EAAE,CAAC,QAAQ,EAAE,IAAI,CAAC;EACvB,OAAO,EAAE,CAAC,QAAQ,EAAE,MAAM,CAAC;EAC3B,OAAO,EAAE,CAAC,QAAQ,EAAE,MAAM,CAAC;EAC3B,YAAY,EAAE,CAAC,QAAQ,EAAE,WAAW,CAAC;EACrC,SAAS,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC;EAC/B,QAAQ,EAAE,CAAC,QAAQ,EAAE,OAAO,CAAC;EAC7B,QAAQ,EAAE,CAAC,QAAQ,EAAE,OAAO,CAAC;EAC7B,SAAS,EAAE,CAAC,QAAQ,EAAE,QAAQ,CAAC;EAC/B,QAAQ,EAAE,CAAC,QAAQ,EAAE,OAAO,CAAC;EAC7B,MAAM,EAAE,CAAC,QAAQ,EAAE,KAAK,CAAC;EACzB,MAAM,EAAE,CAAC,QAAQ,EAAE,KAAK,CAAC;EACzB,MAAM,EAAE,CAAC,QAAQ,EAAE,KAAK,CAAC;EACzB,OAAO,EAAE,CAAC,QAAQ,EAAE,MAAM,CAAC;EAC3B,MAAM,EAAE,CAAC,QAAQ,EAAE,KAAK,CAAC;EACzB,UAAU,EAAE,CAAC,QAAQ,EAAE,SAAS,CAAC;EACjC,MAAM,EAAE,CAAC,QAAQ,EAAE,KAAK,CAAC;EACzB,KAAK,EAAE,CAAC,QAAQ,EAAE,IAAI,CAAC;EACvB,KAAK,EAAE,CAAC,QAAQ,EAAE,IAAI,CAAC;EACvB,KAAK,EAAE,CAAC,QAAQ,EAAE,IAAI;AAC1B,CAAC,EAAEJ,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAACM,UAAU,CAAC,2BAA2B,EAAE;EACvD,OAAO,EAAE,OAAO;EAChB,UAAU,EAAE,CAAC,OAAO,EAAE,8BAA8B,EAAE,CAAC,CAAC;EACxD,cAAc,EAAE,CAAC,cAAc,EAAE,SAAS,CAAC;EAC3C,IAAI,EAAE,CAAC,cAAc,EAAE,SAAS,CAAC;EACjC,WAAW,EAAE,CAAC,cAAc,EAAE,SAAS,CAAC;EACxC,KAAK,EAAE,CAAC,cAAc,EAAE,SAAS,CAAC;EAClC,YAAY,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,SAAS,CAAC;EAC1C,IAAI,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,SAAS,CAAC;EAClC,mBAAmB,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,WAAW,CAAC;EACnD,aAAa,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,WAAW,CAAC;EAC7C,KAAK,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,WAAW,CAAC;EACrC,sBAAsB,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,SAAS,CAAC;EACpD,aAAa,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,SAAS,CAAC;EAC3C,KAAK,EAAE,CAAC,YAAY,EAAE,CAAC,EAAE,SAAS;AACtC,CAAC,EAAEJ,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAACM,UAAU,CAAC,wBAAwB,EAAE;EACpD,KAAK,EAAE,KAAK;EACZ,KAAK,EAAE,KAAK;EACZ,cAAc,EAAE,QAAQ;EACxB,IAAI,EAAE,QAAQ;EACd,QAAQ,EAAE,QAAQ;EAClB,cAAc,EAAE,QAAQ;EACxB,MAAM,EAAE,QAAQ;EAChB,QAAQ,EAAE,QAAQ;EAClB,IAAI,EAAE,QAAQ;EACd,kBAAkB,EAAE,aAAa;EACjC,QAAQ,EAAE,aAAa;EACvB,IAAI,EAAE,aAAa;EACnB,eAAe,EAAE,eAAe;EAChC,UAAU,EAAE,eAAe;EAC3B,KAAK,EAAE;AACX,CAAC,EAAEJ,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAACM,UAAU,CAAC,uBAAuB,EAAE;EACnD,gBAAgB,EAAE,gBAAgB;EAClC,MAAM,EAAE,gBAAgB;EACxB,OAAO,EAAE,CAAC,OAAO,EAAE,YAAY,EAAE,CAAC,CAAC;EACnC,OAAO,EAAE,CAAC,OAAO,EAAE,aAAa,EAAE,CAAC,CAAC;EACpC,OAAO,EAAE,CAAC,OAAO,EAAE,YAAY,EAAE,CAAC,CAAC;EACnC,OAAO,EAAE,CAAC,OAAO,EAAE,YAAY,EAAE,CAAC,CAAC;EACnC,qBAAqB,EAAE,CAAC,gBAAgB,EAAE,IAAI,CAAC;EAC/C,OAAO,EAAE,CAAC,gBAAgB,EAAE,IAAI,CAAC;EACjC,QAAQ,EAAE,CAAC,OAAO,EAAE,aAAa,EAAE,CAAC,CAAC;EACrC,QAAQ,EAAE,CAAC,OAAO,EAAE,cAAc,EAAE,CAAC,CAAC;EACtC,QAAQ,EAAE,CAAC,OAAO,EAAE,aAAa,EAAE,CAAC,CAAC;EACrC,QAAQ,EAAE,CAAC,OAAO,EAAE,aAAa,EAAE,CAAC,CAAC;EACrC,mBAAmB,EAAE,CAAC,OAAO,EAAE,aAAa,EAAE,CAAC,CAAC;EAChD,MAAM,EAAE,CAAC,OAAO,EAAE,aAAa,EAAE,CAAC,CAAC;EACnC,OAAO,EAAE,CAAC,OAAO,EAAE,cAAc,EAAE,CAAC,CAAC;EACrC,gBAAgB,EAAE,gBAAgB;EAClC,MAAM,EAAE,gBAAgB;EACxB,SAAS,EAAE,SAAS;EACpB,MAAM,EAAE,SAAS;EACjB,YAAY,EAAE,CAAC,OAAO,EAAE,mBAAmB,EAAE,CAAC,CAAC;EAC/C,MAAM,EAAE,CAAC,OAAO,EAAE,mBAAmB,EAAE,CAAC,CAAC;EACzC,aAAa,EAAE,aAAa;EAC5B,MAAM,EAAE,aAAa;EACrB,gBAAgB,EAAE,gBAAgB;EAClC,MAAM,EAAE,gBAAgB;EACxB,oBAAoB,EAAE,CAAC,gBAAgB,EAAE,IAAI,CAAC;EAC9C,OAAO,EAAE,CAAC,gBAAgB,EAAE,IAAI;AACpC,CAAC,EAAEJ,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAACyB,cAAc,CAAC,kBAAkB,EAAErB,iBAAiB,CAACM,OAAO,CAACgB,WAAW,EAAE;EACzFC,WAAW,EAAE,CAAC,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,SAAS,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3E,CAAC,EAAEzB,mBAAmB,CAACQ,OAAO,CAAC;AAC/B,IAAIV,cAAc,CAAC4B,QAAQ,CAAC,oBAAoB,EAAE;EAC9C,GAAG,EAAE,CAAC,WAAW,EAAEvB,YAAY,CAACwB,QAAQ,CAACC,GAAG,CAAC;EAC7C,GAAG,EAAE,WAAW;EAChB,GAAG,EAAE;AACT,CAAC,EAAE5B,mBAAmB,CAACQ,OAAO,CAAC","ignoreList":[]},"metadata":{},"sourceType":"script","externalDependencies":[]}