/** * Scalar computation library */ export declare class Scalar { /** * Two pi constants convenient for computation. */ static TwoPi: number; /** * Boolean : true if the absolute difference between a and b is lower than epsilon (default = 1.401298E-45) * @param a number * @param b number * @param epsilon (default = 1.401298E-45) * @returns true if the absolute difference between a and b is lower than epsilon (default = 1.401298E-45) */ static WithinEpsilon: (a: number, b: number, epsilon?: number) => boolean; /** * Returns a string : the upper case translation of the number i to hexadecimal. * @param i number * @returns the upper case translation of the number i to hexadecimal. */ static ToHex: (i: number) => string; /** * Returns -1 if value is negative and +1 is value is positive. * @param value the value * @returns the value itself if it's equal to zero. */ static Sign(value: number): number; /** * Returns the value itself if it's between min and max. * Returns min if the value is lower than min. * Returns max if the value is greater than max. * @param value the value to clmap * @param min the min value to clamp to (default: 0) * @param max the max value to clamp to (default: 1) * @returns the clamped value */ static Clamp: (value: number, min?: number, max?: number) => number; /** * the log2 of value. * @param value the value to compute log2 of * @returns the log2 of value. */ static Log2(value: number): number; /** * the floor part of a log2 value. * @param value the value to compute log2 of * @returns the log2 of value. */ static ILog2(value: number): number; /** * Loops the value, so that it is never larger than length and never smaller than 0. * * This is similar to the modulo operator but it works with floating point numbers. * For example, using 3.0 for t and 2.5 for length, the result would be 0.5. * With t = 5 and length = 2.5, the result would be 0.0. * Note, however, that the behaviour is not defined for negative numbers as it is for the modulo operator * @param value the value * @param length the length * @returns the looped value */ static Repeat(value: number, length: number): number; /** * Normalize the value between 0.0 and 1.0 using min and max values * @param value value to normalize * @param min max to normalize between * @param max min to normalize between * @returns the normalized value */ static Normalize(value: number, min: number, max: number): number; /** * Denormalize the value from 0.0 and 1.0 using min and max values * @param normalized value to denormalize * @param min max to denormalize between * @param max min to denormalize between * @returns the denormalized value */ static Denormalize(normalized: number, min: number, max: number): number; /** * Calculates the shortest difference between two given angles given in degrees. * @param current current angle in degrees * @param target target angle in degrees * @returns the delta */ static DeltaAngle(current: number, target: number): number; /** * PingPongs the value t, so that it is never larger than length and never smaller than 0. * @param tx value * @param length length * @returns The returned value will move back and forth between 0 and length */ static PingPong(tx: number, length: number): number; /** * Interpolates between min and max with smoothing at the limits. * * This function interpolates between min and max in a similar way to Lerp. However, the interpolation will gradually speed up * from the start and slow down toward the end. This is useful for creating natural-looking animation, fading and other transitions. * @param from from * @param to to * @param tx value * @returns the smooth stepped value */ static SmoothStep(from: number, to: number, tx: number): number; /** * Moves a value current towards target. * * This is essentially the same as Mathf.Lerp but instead the function will ensure that the speed never exceeds maxDelta. * Negative values of maxDelta pushes the value away from target. * @param current current value * @param target target value * @param maxDelta max distance to move * @returns resulting value */ static MoveTowards(current: number, target: number, maxDelta: number): number; /** * Same as MoveTowards but makes sure the values interpolate correctly when they wrap around 360 degrees. * * Variables current and target are assumed to be in degrees. For optimization reasons, negative values of maxDelta * are not supported and may cause oscillation. To push current away from a target angle, add 180 to that angle instead. * @param current current value * @param target target value * @param maxDelta max distance to move * @returns resulting angle */ static MoveTowardsAngle(current: number, target: number, maxDelta: number): number; /** * Creates a new scalar with values linearly interpolated of "amount" between the start scalar and the end scalar. * @param start start value * @param end target value * @param amount amount to lerp between * @returns the lerped value */ static Lerp: (start: number, end: number, amount: number) => number; /** * Same as Lerp but makes sure the values interpolate correctly when they wrap around 360 degrees. * The parameter t is clamped to the range [0, 1]. Variables a and b are assumed to be in degrees. * @param start start value * @param end target value * @param amount amount to lerp between * @returns the lerped value */ static LerpAngle(start: number, end: number, amount: number): number; /** * Calculates the linear parameter t that produces the interpolant value within the range [a, b]. * @param a start value * @param b target value * @param value value between a and b * @returns the inverseLerp value */ static InverseLerp(a: number, b: number, value: number): number; /** * Returns a new scalar located for "amount" (float) on the Hermite spline defined by the scalars "value1", "value3", "tangent1", "tangent2". * @see http://mathworld.wolfram.com/HermitePolynomial.html * @param value1 defines the first control point * @param tangent1 defines the first tangent * @param value2 defines the second control point * @param tangent2 defines the second tangent * @param amount defines the amount on the interpolation spline (between 0 and 1) * @returns hermite result */ static Hermite(value1: number, tangent1: number, value2: number, tangent2: number, amount: number): number; /** * Returns a new scalar which is the 1st derivative of the Hermite spline defined by the scalars "value1", "value2", "tangent1", "tangent2". * @param value1 defines the first control point * @param tangent1 defines the first tangent * @param value2 defines the second control point * @param tangent2 defines the second tangent * @param time define where the derivative must be done * @returns 1st derivative */ static Hermite1stDerivative(value1: number, tangent1: number, value2: number, tangent2: number, time: number): number; /** * Returns a random float number between and min and max values * @param min min value of random * @param max max value of random * @returns random value */ static RandomRange: (min: number, max: number) => number; /** * This function returns percentage of a number in a given range. * * RangeToPercent(40,20,60) will return 0.5 (50%) * RangeToPercent(34,0,100) will return 0.34 (34%) * @param number to convert to percentage * @param min min range * @param max max range * @returns the percentage */ static RangeToPercent(number: number, min: number, max: number): number; /** * This function returns number that corresponds to the percentage in a given range. * * PercentToRange(0.34,0,100) will return 34. * @param percent to convert to number * @param min min range * @param max max range * @returns the number */ static PercentToRange(percent: number, min: number, max: number): number; /** * Returns the angle converted to equivalent value between -Math.PI and Math.PI radians. * @param angle The angle to normalize in radian. * @returns The converted angle. */ static NormalizeRadians: (angle: number) => number; /** * Returns the highest common factor of two integers. * @param a first parameter * @param b second parameter * @returns HCF of a and b */ static HCF(a: number, b: number): number; }