import { __decorate } from "../tslib.es6.js"; import { PostProcess } from "./postProcess.js"; import "../Shaders/convolution.fragment.js"; import { RegisterClass } from "../Misc/typeStore.js"; import { serialize } from "../Misc/decorators.js"; import { SerializationHelper } from "../Misc/decorators.serialization.js"; /** * The ConvolutionPostProcess applies a 3x3 kernel to every pixel of the * input texture to perform effects such as edge detection or sharpening * See http://en.wikipedia.org/wiki/Kernel_(image_processing) */ export class ConvolutionPostProcess extends PostProcess { /** * Gets a string identifying the name of the class * @returns "ConvolutionPostProcess" string */ getClassName() { return "ConvolutionPostProcess"; } /** * Creates a new instance ConvolutionPostProcess * @param name The name of the effect. * @param kernel Array of 9 values corresponding to the 3x3 kernel to be applied * @param options The required width/height ratio to downsize to before computing the render pass. * @param camera The camera to apply the render pass to. * @param samplingMode The sampling mode to be used when computing the pass. (default: 0) * @param engine The engine which the post process will be applied. (default: current engine) * @param reusable If the post process can be reused on the same frame. (default: false) * @param textureType Type of textures used when performing the post process. (default: 0) */ constructor(name, kernel, options, camera, samplingMode, engine, reusable, textureType = 0) { super(name, "convolution", ["kernel", "screenSize"], null, options, camera, samplingMode, engine, reusable, null, textureType); this.kernel = kernel; this.onApply = (effect) => { effect.setFloat2("screenSize", this.width, this.height); effect.setArray("kernel", this.kernel); }; } /** * @internal */ static _Parse(parsedPostProcess, targetCamera, scene, rootUrl) { return SerializationHelper.Parse(() => { return new ConvolutionPostProcess(parsedPostProcess.name, parsedPostProcess.kernel, parsedPostProcess.options, targetCamera, parsedPostProcess.renderTargetSamplingMode, scene.getEngine(), parsedPostProcess.reusable, parsedPostProcess.textureType); }, parsedPostProcess, scene, rootUrl); } } // Statics /** * Edge detection 0 see https://en.wikipedia.org/wiki/Kernel_(image_processing) */ ConvolutionPostProcess.EdgeDetect0Kernel = [1, 0, -1, 0, 0, 0, -1, 0, 1]; /** * Edge detection 1 see https://en.wikipedia.org/wiki/Kernel_(image_processing) */ ConvolutionPostProcess.EdgeDetect1Kernel = [0, 1, 0, 1, -4, 1, 0, 1, 0]; /** * Edge detection 2 see https://en.wikipedia.org/wiki/Kernel_(image_processing) */ ConvolutionPostProcess.EdgeDetect2Kernel = [-1, -1, -1, -1, 8, -1, -1, -1, -1]; /** * Kernel to sharpen an image see https://en.wikipedia.org/wiki/Kernel_(image_processing) */ ConvolutionPostProcess.SharpenKernel = [0, -1, 0, -1, 5, -1, 0, -1, 0]; /** * Kernel to emboss an image see https://en.wikipedia.org/wiki/Kernel_(image_processing) */ ConvolutionPostProcess.EmbossKernel = [-2, -1, 0, -1, 1, 1, 0, 1, 2]; /** * Kernel to blur an image see https://en.wikipedia.org/wiki/Kernel_(image_processing) */ ConvolutionPostProcess.GaussianKernel = [0, 1, 0, 1, 1, 1, 0, 1, 0]; __decorate([ serialize() ], ConvolutionPostProcess.prototype, "kernel", void 0); RegisterClass("BABYLON.ConvolutionPostProcess", ConvolutionPostProcess); //# sourceMappingURL=convolutionPostProcess.js.map