123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428 |
- /* eslint-disable @typescript-eslint/naming-convention */
- import { Vector3 } from "../Maths/math.vector.js";
- import { TmpVectors } from "./math.js";
- // https://dickyjim.wordpress.com/2013/09/04/spherical-harmonics-for-beginners/
- // http://silviojemma.com/public/papers/lighting/spherical-harmonic-lighting.pdf
- // https://www.ppsloan.org/publications/StupidSH36.pdf
- // http://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf
- // https://www.ppsloan.org/publications/SHJCGT.pdf
- // https://www.ppsloan.org/publications/shdering.pdf
- // https://google.github.io/filament/Filament.md.html#annex/sphericalharmonics
- // https://patapom.com/blog/SHPortal/
- // https://imdoingitwrong.wordpress.com/2011/04/14/spherical-harmonics-wtf/
- // Using real SH basis:
- // m>0 m m
- // y = sqrt(2) * K * P * cos(m*phi) * cos(theta)
- // l l l
- //
- // m<0 m |m|
- // y = sqrt(2) * K * P * sin(m*phi) * cos(theta)
- // l l l
- //
- // m=0 0 0
- // y = K * P * trigono terms
- // l l l
- //
- // m (2l + 1)(l - |m|)!
- // K = sqrt(------------------)
- // l 4pi(l + |m|)!
- //
- // and P by recursion:
- //
- // P00(x) = 1
- // P01(x) = x
- // Pll(x) = (-1^l)(2l - 1)!!(1-x*x)^(1/2)
- // ((2l - 1)x[Pl-1/m]-(l + m - 1)[Pl-2/m])
- // Plm(x) = ---------------------------------------
- // l - m
- // Leaving the trigonometric terms aside we can precompute the constants to :
- const SH3ylmBasisConstants = [
- Math.sqrt(1 / (4 * Math.PI)),
- -Math.sqrt(3 / (4 * Math.PI)),
- Math.sqrt(3 / (4 * Math.PI)),
- -Math.sqrt(3 / (4 * Math.PI)),
- Math.sqrt(15 / (4 * Math.PI)),
- -Math.sqrt(15 / (4 * Math.PI)),
- Math.sqrt(5 / (16 * Math.PI)),
- -Math.sqrt(15 / (4 * Math.PI)),
- Math.sqrt(15 / (16 * Math.PI)), // l22
- ];
- // cm = cos(m * phi)
- // sm = sin(m * phi)
- // {x,y,z} = {cos(phi)sin(theta), sin(phi)sin(theta), cos(theta)}
- // By recursion on using trigo identities:
- const SH3ylmBasisTrigonometricTerms = [
- () => 1,
- (direction) => direction.y,
- (direction) => direction.z,
- (direction) => direction.x,
- (direction) => direction.x * direction.y,
- (direction) => direction.y * direction.z,
- (direction) => 3 * direction.z * direction.z - 1,
- (direction) => direction.x * direction.z,
- (direction) => direction.x * direction.x - direction.y * direction.y, // l22
- ];
- // Wrap the full compute
- const applySH3 = (lm, direction) => {
- return SH3ylmBasisConstants[lm] * SH3ylmBasisTrigonometricTerms[lm](direction);
- };
- // Derived from the integration of the a kernel convolution to SH.
- // Great explanation here: https://patapom.com/blog/SHPortal/#about-distant-radiance-and-irradiance-environments
- const SHCosKernelConvolution = [Math.PI, (2 * Math.PI) / 3, (2 * Math.PI) / 3, (2 * Math.PI) / 3, Math.PI / 4, Math.PI / 4, Math.PI / 4, Math.PI / 4, Math.PI / 4];
- /**
- * Class representing spherical harmonics coefficients to the 3rd degree
- */
- export class SphericalHarmonics {
- constructor() {
- /**
- * Defines whether or not the harmonics have been prescaled for rendering.
- */
- this.preScaled = false;
- /**
- * The l0,0 coefficients of the spherical harmonics
- */
- this.l00 = Vector3.Zero();
- /**
- * The l1,-1 coefficients of the spherical harmonics
- */
- this.l1_1 = Vector3.Zero();
- /**
- * The l1,0 coefficients of the spherical harmonics
- */
- this.l10 = Vector3.Zero();
- /**
- * The l1,1 coefficients of the spherical harmonics
- */
- this.l11 = Vector3.Zero();
- /**
- * The l2,-2 coefficients of the spherical harmonics
- */
- this.l2_2 = Vector3.Zero();
- /**
- * The l2,-1 coefficients of the spherical harmonics
- */
- this.l2_1 = Vector3.Zero();
- /**
- * The l2,0 coefficients of the spherical harmonics
- */
- this.l20 = Vector3.Zero();
- /**
- * The l2,1 coefficients of the spherical harmonics
- */
- this.l21 = Vector3.Zero();
- /**
- * The l2,2 coefficients of the spherical harmonics
- */
- this.l22 = Vector3.Zero();
- }
- /**
- * Adds a light to the spherical harmonics
- * @param direction the direction of the light
- * @param color the color of the light
- * @param deltaSolidAngle the delta solid angle of the light
- */
- addLight(direction, color, deltaSolidAngle) {
- TmpVectors.Vector3[0].set(color.r, color.g, color.b);
- const colorVector = TmpVectors.Vector3[0];
- const c = TmpVectors.Vector3[1];
- colorVector.scaleToRef(deltaSolidAngle, c);
- c.scaleToRef(applySH3(0, direction), TmpVectors.Vector3[2]);
- this.l00.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(1, direction), TmpVectors.Vector3[2]);
- this.l1_1.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(2, direction), TmpVectors.Vector3[2]);
- this.l10.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(3, direction), TmpVectors.Vector3[2]);
- this.l11.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(4, direction), TmpVectors.Vector3[2]);
- this.l2_2.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(5, direction), TmpVectors.Vector3[2]);
- this.l2_1.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(6, direction), TmpVectors.Vector3[2]);
- this.l20.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(7, direction), TmpVectors.Vector3[2]);
- this.l21.addInPlace(TmpVectors.Vector3[2]);
- c.scaleToRef(applySH3(8, direction), TmpVectors.Vector3[2]);
- this.l22.addInPlace(TmpVectors.Vector3[2]);
- }
- /**
- * Scales the spherical harmonics by the given amount
- * @param scale the amount to scale
- */
- scaleInPlace(scale) {
- this.l00.scaleInPlace(scale);
- this.l1_1.scaleInPlace(scale);
- this.l10.scaleInPlace(scale);
- this.l11.scaleInPlace(scale);
- this.l2_2.scaleInPlace(scale);
- this.l2_1.scaleInPlace(scale);
- this.l20.scaleInPlace(scale);
- this.l21.scaleInPlace(scale);
- this.l22.scaleInPlace(scale);
- }
- /**
- * Convert from incident radiance (Li) to irradiance (E) by applying convolution with the cosine-weighted hemisphere.
- *
- * ```
- * E_lm = A_l * L_lm
- * ```
- *
- * In spherical harmonics this convolution amounts to scaling factors for each frequency band.
- * This corresponds to equation 5 in "An Efficient Representation for Irradiance Environment Maps", where
- * the scaling factors are given in equation 9.
- */
- convertIncidentRadianceToIrradiance() {
- // Constant (Band 0)
- this.l00.scaleInPlace(SHCosKernelConvolution[0]);
- // Linear (Band 1)
- this.l1_1.scaleInPlace(SHCosKernelConvolution[1]);
- this.l10.scaleInPlace(SHCosKernelConvolution[2]);
- this.l11.scaleInPlace(SHCosKernelConvolution[3]);
- // Quadratic (Band 2)
- this.l2_2.scaleInPlace(SHCosKernelConvolution[4]);
- this.l2_1.scaleInPlace(SHCosKernelConvolution[5]);
- this.l20.scaleInPlace(SHCosKernelConvolution[6]);
- this.l21.scaleInPlace(SHCosKernelConvolution[7]);
- this.l22.scaleInPlace(SHCosKernelConvolution[8]);
- }
- /**
- * Convert from irradiance to outgoing radiance for Lambertian BDRF, suitable for efficient shader evaluation.
- *
- * ```
- * L = (1/pi) * E * rho
- * ```
- *
- * This is done by an additional scale by 1/pi, so is a fairly trivial operation but important conceptually.
- */
- convertIrradianceToLambertianRadiance() {
- this.scaleInPlace(1.0 / Math.PI);
- // The resultant SH now represents outgoing radiance, so includes the Lambert 1/pi normalisation factor but without albedo (rho) applied
- // (The pixel shader must apply albedo after texture fetches, etc).
- }
- /**
- * Integrates the reconstruction coefficients directly in to the SH preventing further
- * required operations at run time.
- *
- * This is simply done by scaling back the SH with Ylm constants parameter.
- * The trigonometric part being applied by the shader at run time.
- */
- preScaleForRendering() {
- this.preScaled = true;
- this.l00.scaleInPlace(SH3ylmBasisConstants[0]);
- this.l1_1.scaleInPlace(SH3ylmBasisConstants[1]);
- this.l10.scaleInPlace(SH3ylmBasisConstants[2]);
- this.l11.scaleInPlace(SH3ylmBasisConstants[3]);
- this.l2_2.scaleInPlace(SH3ylmBasisConstants[4]);
- this.l2_1.scaleInPlace(SH3ylmBasisConstants[5]);
- this.l20.scaleInPlace(SH3ylmBasisConstants[6]);
- this.l21.scaleInPlace(SH3ylmBasisConstants[7]);
- this.l22.scaleInPlace(SH3ylmBasisConstants[8]);
- }
- /**
- * update the spherical harmonics coefficients from the given array
- * @param data defines the 9x3 coefficients (l00, l1-1, l10, l11, l2-2, l2-1, l20, l21, l22)
- * @returns the spherical harmonics (this)
- */
- updateFromArray(data) {
- Vector3.FromArrayToRef(data[0], 0, this.l00);
- Vector3.FromArrayToRef(data[1], 0, this.l1_1);
- Vector3.FromArrayToRef(data[2], 0, this.l10);
- Vector3.FromArrayToRef(data[3], 0, this.l11);
- Vector3.FromArrayToRef(data[4], 0, this.l2_2);
- Vector3.FromArrayToRef(data[5], 0, this.l2_1);
- Vector3.FromArrayToRef(data[6], 0, this.l20);
- Vector3.FromArrayToRef(data[7], 0, this.l21);
- Vector3.FromArrayToRef(data[8], 0, this.l22);
- return this;
- }
- /**
- * update the spherical harmonics coefficients from the given floats array
- * @param data defines the 9x3 coefficients (l00, l1-1, l10, l11, l2-2, l2-1, l20, l21, l22)
- * @returns the spherical harmonics (this)
- */
- updateFromFloatsArray(data) {
- Vector3.FromFloatsToRef(data[0], data[1], data[2], this.l00);
- Vector3.FromFloatsToRef(data[3], data[4], data[5], this.l1_1);
- Vector3.FromFloatsToRef(data[6], data[7], data[8], this.l10);
- Vector3.FromFloatsToRef(data[9], data[10], data[11], this.l11);
- Vector3.FromFloatsToRef(data[12], data[13], data[14], this.l2_2);
- Vector3.FromFloatsToRef(data[15], data[16], data[17], this.l2_1);
- Vector3.FromFloatsToRef(data[18], data[19], data[20], this.l20);
- Vector3.FromFloatsToRef(data[21], data[22], data[23], this.l21);
- Vector3.FromFloatsToRef(data[24], data[25], data[26], this.l22);
- return this;
- }
- /**
- * Constructs a spherical harmonics from an array.
- * @param data defines the 9x3 coefficients (l00, l1-1, l10, l11, l2-2, l2-1, l20, l21, l22)
- * @returns the spherical harmonics
- */
- static FromArray(data) {
- const sh = new SphericalHarmonics();
- return sh.updateFromArray(data);
- }
- // Keep for references.
- /**
- * Gets the spherical harmonics from polynomial
- * @param polynomial the spherical polynomial
- * @returns the spherical harmonics
- */
- static FromPolynomial(polynomial) {
- const result = new SphericalHarmonics();
- result.l00 = polynomial.xx.scale(0.376127).add(polynomial.yy.scale(0.376127)).add(polynomial.zz.scale(0.376126));
- result.l1_1 = polynomial.y.scale(0.977204);
- result.l10 = polynomial.z.scale(0.977204);
- result.l11 = polynomial.x.scale(0.977204);
- result.l2_2 = polynomial.xy.scale(1.16538);
- result.l2_1 = polynomial.yz.scale(1.16538);
- result.l20 = polynomial.zz.scale(1.34567).subtract(polynomial.xx.scale(0.672834)).subtract(polynomial.yy.scale(0.672834));
- result.l21 = polynomial.zx.scale(1.16538);
- result.l22 = polynomial.xx.scale(1.16538).subtract(polynomial.yy.scale(1.16538));
- result.l1_1.scaleInPlace(-1);
- result.l11.scaleInPlace(-1);
- result.l2_1.scaleInPlace(-1);
- result.l21.scaleInPlace(-1);
- result.scaleInPlace(Math.PI);
- return result;
- }
- }
- /**
- * Class representing spherical polynomial coefficients to the 3rd degree
- */
- export class SphericalPolynomial {
- constructor() {
- /**
- * The x coefficients of the spherical polynomial
- */
- this.x = Vector3.Zero();
- /**
- * The y coefficients of the spherical polynomial
- */
- this.y = Vector3.Zero();
- /**
- * The z coefficients of the spherical polynomial
- */
- this.z = Vector3.Zero();
- /**
- * The xx coefficients of the spherical polynomial
- */
- this.xx = Vector3.Zero();
- /**
- * The yy coefficients of the spherical polynomial
- */
- this.yy = Vector3.Zero();
- /**
- * The zz coefficients of the spherical polynomial
- */
- this.zz = Vector3.Zero();
- /**
- * The xy coefficients of the spherical polynomial
- */
- this.xy = Vector3.Zero();
- /**
- * The yz coefficients of the spherical polynomial
- */
- this.yz = Vector3.Zero();
- /**
- * The zx coefficients of the spherical polynomial
- */
- this.zx = Vector3.Zero();
- }
- /**
- * The spherical harmonics used to create the polynomials.
- */
- get preScaledHarmonics() {
- if (!this._harmonics) {
- this._harmonics = SphericalHarmonics.FromPolynomial(this);
- }
- if (!this._harmonics.preScaled) {
- this._harmonics.preScaleForRendering();
- }
- return this._harmonics;
- }
- /**
- * Adds an ambient color to the spherical polynomial
- * @param color the color to add
- */
- addAmbient(color) {
- TmpVectors.Vector3[0].copyFromFloats(color.r, color.g, color.b);
- const colorVector = TmpVectors.Vector3[0];
- this.xx.addInPlace(colorVector);
- this.yy.addInPlace(colorVector);
- this.zz.addInPlace(colorVector);
- }
- /**
- * Scales the spherical polynomial by the given amount
- * @param scale the amount to scale
- */
- scaleInPlace(scale) {
- this.x.scaleInPlace(scale);
- this.y.scaleInPlace(scale);
- this.z.scaleInPlace(scale);
- this.xx.scaleInPlace(scale);
- this.yy.scaleInPlace(scale);
- this.zz.scaleInPlace(scale);
- this.yz.scaleInPlace(scale);
- this.zx.scaleInPlace(scale);
- this.xy.scaleInPlace(scale);
- }
- /**
- * Updates the spherical polynomial from harmonics
- * @param harmonics the spherical harmonics
- * @returns the spherical polynomial
- */
- updateFromHarmonics(harmonics) {
- this._harmonics = harmonics;
- this.x.copyFrom(harmonics.l11);
- this.x.scaleInPlace(1.02333).scaleInPlace(-1);
- this.y.copyFrom(harmonics.l1_1);
- this.y.scaleInPlace(1.02333).scaleInPlace(-1);
- this.z.copyFrom(harmonics.l10);
- this.z.scaleInPlace(1.02333);
- this.xx.copyFrom(harmonics.l00);
- TmpVectors.Vector3[0].copyFrom(harmonics.l20).scaleInPlace(0.247708);
- TmpVectors.Vector3[1].copyFrom(harmonics.l22).scaleInPlace(0.429043);
- this.xx.scaleInPlace(0.886277).subtractInPlace(TmpVectors.Vector3[0]).addInPlace(TmpVectors.Vector3[1]);
- this.yy.copyFrom(harmonics.l00);
- this.yy.scaleInPlace(0.886277).subtractInPlace(TmpVectors.Vector3[0]).subtractInPlace(TmpVectors.Vector3[1]);
- this.zz.copyFrom(harmonics.l00);
- TmpVectors.Vector3[0].copyFrom(harmonics.l20).scaleInPlace(0.495417);
- this.zz.scaleInPlace(0.886277).addInPlace(TmpVectors.Vector3[0]);
- this.yz.copyFrom(harmonics.l2_1);
- this.yz.scaleInPlace(0.858086).scaleInPlace(-1);
- this.zx.copyFrom(harmonics.l21);
- this.zx.scaleInPlace(0.858086).scaleInPlace(-1);
- this.xy.copyFrom(harmonics.l2_2);
- this.xy.scaleInPlace(0.858086);
- this.scaleInPlace(1.0 / Math.PI);
- return this;
- }
- /**
- * Gets the spherical polynomial from harmonics
- * @param harmonics the spherical harmonics
- * @returns the spherical polynomial
- */
- static FromHarmonics(harmonics) {
- const result = new SphericalPolynomial();
- return result.updateFromHarmonics(harmonics);
- }
- /**
- * Constructs a spherical polynomial from an array.
- * @param data defines the 9x3 coefficients (x, y, z, xx, yy, zz, yz, zx, xy)
- * @returns the spherical polynomial
- */
- static FromArray(data) {
- const sp = new SphericalPolynomial();
- Vector3.FromArrayToRef(data[0], 0, sp.x);
- Vector3.FromArrayToRef(data[1], 0, sp.y);
- Vector3.FromArrayToRef(data[2], 0, sp.z);
- Vector3.FromArrayToRef(data[3], 0, sp.xx);
- Vector3.FromArrayToRef(data[4], 0, sp.yy);
- Vector3.FromArrayToRef(data[5], 0, sp.zz);
- Vector3.FromArrayToRef(data[6], 0, sp.yz);
- Vector3.FromArrayToRef(data[7], 0, sp.zx);
- Vector3.FromArrayToRef(data[8], 0, sp.xy);
- return sp;
- }
- }
- //# sourceMappingURL=sphericalPolynomial.js.map
|