# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Pixtral. """ from typing import List, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput, is_valid_image, load_image from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order from ...tokenization_utils_base import PreTokenizedInput, TextInput from ...utils import is_torch_device, is_torch_dtype, is_torch_tensor, logging, requires_backends logger = logging.get_logger(__name__) class PixtralProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": {}, "common_kwargs": { "return_tensors": "pt", }, } # Copied from transformers.models.idefics2.processing_idefics2.is_url def is_url(val) -> bool: return isinstance(val, str) and val.startswith("http") # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url def is_image_or_image_url(elem): return is_url(elem) or is_valid_image(elem) # Copied from transformers.models.pixtral.image_processing_pixtral.BatchMixFeature class BatchMixFeature(BatchFeature): def to(self, *args, **kwargs) -> "BatchMixFeature": """ Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in different `dtypes` and sending the `BatchFeature` to a different `device`. Args: args (`Tuple`): Will be passed to the `to(...)` function of the tensors. kwargs (`Dict`, *optional*): Will be passed to the `to(...)` function of the tensors. Returns: [`BatchFeature`]: The same instance after modification. """ requires_backends(self, ["torch"]) import torch # noqa new_data = {} device = kwargs.get("device") # Check if the args are a device or a dtype if device is None and len(args) > 0: # device should be always the first argument arg = args[0] if is_torch_dtype(arg): # The first argument is a dtype pass elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int): device = arg else: # it's something else raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.") # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor` for k, v in self.items(): # check if v is a floating point if isinstance(v, list): new_data[k] = [ element.to(*args, **kwargs) for sample in v for element in sample if is_torch_tensor(element) ] elif isinstance(v, torch.Tensor) and torch.is_floating_point(v): # cast and send to device new_data[k] = v.to(*args, **kwargs) elif isinstance(v, torch.Tensor) and device is not None: new_data[k] = v.to(device=device) else: new_data[k] = v self.data = new_data return self class PixtralProcessor(ProcessorMixin): r""" Constructs a Pixtral processor which wraps a Pixtral image processor and a Pixtral tokenizer into a single processor. [`PixtralProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~PixtralProcessor.__call__`] and [`~PixtralProcessor.decode`] for more information. Args: image_processor ([`PixtralImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. patch_size (`int`, *optional*, defaults to 16): Patch size from the vision tower. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. image_token (`str`, *optional*, defaults to `"[IMG]"`): Special token used to denote image location. image_break_token (`str`, *optional*, defaults to `"[IMG_BREAK]"`): Special token used to denote the end of a line of pixels in an image. image_end_token (`str`, *optional*, defaults to `"[IMG_END]"`): Special token used to denote the end of an image input. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = [ "chat_template", "patch_size", "image_token", "image_break_token", "image_end_token", ] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor=None, tokenizer=None, patch_size: int = 16, chat_template=None, image_token="[IMG]", # set the default and let users change if they have peculiar special tokens in rare cases image_break_token="[IMG_BREAK]", image_end_token="[IMG_END]", **kwargs, ): self.patch_size = patch_size self.image_token = image_token self.image_break_token = image_break_token self.image_end_token = image_end_token super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[PixtralProcessorKwargs], ) -> BatchMixFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ # check if images and text inputs are reversed for BC images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( PixtralProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: if is_image_or_image_url(images): images = [[images]] elif isinstance(images, list) and is_image_or_image_url(images[0]): if isinstance(text, list): images = [[im] for im in images] else: images = [images] elif isinstance(images, list) and isinstance(images[0], list) and is_image_or_image_url(images[0][0]): pass else: raise ValueError( "Invalid input images. Please provide a single image, a list of images, or a list of lists of images." ) images = [[load_image(im) for im in sample] for sample in images] image_inputs = self.image_processor(images, patch_size=self.patch_size, **output_kwargs["images_kwargs"]) else: image_inputs = {} if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") # try to expand inputs in processing if we have the necessary parts prompt_strings = text if image_inputs.get("pixel_values") is not None: # Replace the image token with the expanded image token sequence images = image_inputs["pixel_values"] image_sizes = image_inputs.pop("image_sizes") prompt_strings = [] for sample_images, sample_image_sizes, sample in zip(images, image_sizes, text): replace_strings = [] # First calculate the number of tokens needed for each image and put in a placeholder for image, image_size in zip(sample_images, sample_image_sizes): height, width = image_size num_height_tokens = height // self.patch_size num_width_tokens = width // self.patch_size replace_tokens = [ [self.image_token] * num_width_tokens + [self.image_break_token] ] * num_height_tokens # Flatten list replace_tokens = [item for sublist in replace_tokens for item in sublist] replace_tokens[-1] = self.image_end_token replace_str = "".join(replace_tokens) replace_strings.append(replace_str) sample = sample.replace(self.image_token, "", 1) while "" in sample: replace_str = replace_strings.pop(0) sample = sample.replace("", replace_str, 1) prompt_strings.append(sample) text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"]) return BatchMixFeature(data={**text_inputs, **image_inputs}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))