# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Union from packaging import version from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from typing import Any, Dict, List from ..utils import is_torch_available, is_torchao_available, logging if is_torch_available(): import torch if is_torchao_available(): from torchao.quantization import quantize_ logger = logging.get_logger(__name__) # Finds the parent of a node module named "name" def find_parent(model, name): module_tree = name.split(".")[:-1] parent = model for m in module_tree: parent = parent._modules[m] return parent class TorchAoHfQuantizer(HfQuantizer): """ Quantizer for torchao: https://github.com/pytorch/ao/ """ requires_parameters_quantization = True requires_calibration = False required_packages = ["torchao"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, *args, **kwargs): if not is_torchao_available(): raise ImportError("Loading an torchao quantized model requires torchao library (`pip install torchao`)") self.offload = False device_map = kwargs.get("device_map", None) if isinstance(device_map, dict): if "cpu" in device_map.values() or "disk" in device_map.values(): if self.pre_quantized: raise ValueError( "You are attempting to perform cpu/disk offload with a pre-quantized torchao model " "This is not supported yet . Please remove the CPU or disk device from the device_map." ) else: self.offload = True def update_torch_dtype(self, torch_dtype): if self.quantization_config.quant_type == "int4_weight_only": if torch_dtype is not None and torch_dtype != torch.bfloat16: logger.warning_once( f"Setting torch_dtype to {torch_dtype} for int4_weight_only quantization, but only bfloat16 is supported right now. Please set the torch_dtype to bfloat16." ) if torch_dtype is None: logger.warning_once( "Setting torch_dtype to torch.bfloat16 for int4_weight_only quantization since only bfloat16 is supported right now. Please set torch_dtype=torch.bfloat16 to remove this warning." ) torch_dtype = torch.bfloat16 return torch_dtype def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"): from accelerate.utils import CustomDtype map_to_target_dtype = { "int4_weight_only": CustomDtype.INT4, "int8_weight_only": torch.int8, "int8_dynamic_activation_int8_weight": torch.int8, } return map_to_target_dtype[self.quantization_config.quant_type] else: raise ValueError( "You are using `device_map='auto'` on a torchao quantized model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library with " "`pip install --upgrade accelerate`" ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for the quantization parameters (e.g. scale). Tested with int4 wo and group size = 128 max_memory = {key: val * 0.9 for key, val in max_memory.items()} return max_memory def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): from ..integrations import get_keys_to_not_convert self.modules_to_not_convert = get_keys_to_not_convert(model) if self.quantization_config.modules_to_not_convert is not None: self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) return def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: param_device = kwargs.pop("param_device", None) # check if the param_name is not in self.modules_to_not_convert if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert): return False elif param_device == "cpu" and self.offload: # We don't quantize weights that we offload return False else: # we only quantize the weight of nn.Linear module, tensor_name = get_module_from_name(model, param_name) return isinstance(module, torch.nn.Linear) and (tensor_name == "weight") def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: List[str], ): """ Each nn.Linear layer that needs to be quantized is processsed here. First, we set the value the weight tensor, then we move it to the target device. Finally, we quantize the module. """ module, tensor_name = get_module_from_name(model, param_name) module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device) quantize_(module, self.quantization_config.get_apply_tensor_subclass()) def _process_model_after_weight_loading(self, model): """No process required for torchao quantized model""" return def is_serializable(self, safe_serialization=None): if safe_serialization: logger.warning( "torchao quantized model does not support safe serialization, " "please set `safe_serialization` to False" ) return False _is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse( "0.25.0" ) if not _is_torchao_serializable: logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ") return _is_torchao_serializable @property def is_trainable(self): supported_quant_types_for_training = [ "int8_weight_only", "int8_dynamic_activation_int8_weight", ] return self.quantization_config.quant_type in supported_quant_types_for_training