| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 |
- """Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`."""
- from __future__ import annotations as _annotations
- import dataclasses
- import warnings
- from copy import copy
- from functools import lru_cache
- from inspect import Parameter, ismethoddescriptor, signature
- from typing import TYPE_CHECKING, Any, Callable, Pattern
- from pydantic_core import PydanticUndefined
- from typing_extensions import TypeIs
- from pydantic.errors import PydanticUserError
- from . import _typing_extra
- from ._config import ConfigWrapper
- from ._docs_extraction import extract_docstrings_from_cls
- from ._import_utils import import_cached_base_model, import_cached_field_info
- from ._namespace_utils import NsResolver
- from ._repr import Representation
- from ._utils import can_be_positional
- if TYPE_CHECKING:
- from annotated_types import BaseMetadata
- from ..fields import FieldInfo
- from ..main import BaseModel
- from ._dataclasses import StandardDataclass
- from ._decorators import DecoratorInfos
- class PydanticMetadata(Representation):
- """Base class for annotation markers like `Strict`."""
- __slots__ = ()
- def pydantic_general_metadata(**metadata: Any) -> BaseMetadata:
- """Create a new `_PydanticGeneralMetadata` class with the given metadata.
- Args:
- **metadata: The metadata to add.
- Returns:
- The new `_PydanticGeneralMetadata` class.
- """
- return _general_metadata_cls()(metadata) # type: ignore
- @lru_cache(maxsize=None)
- def _general_metadata_cls() -> type[BaseMetadata]:
- """Do it this way to avoid importing `annotated_types` at import time."""
- from annotated_types import BaseMetadata
- class _PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):
- """Pydantic general metadata like `max_digits`."""
- def __init__(self, metadata: Any):
- self.__dict__ = metadata
- return _PydanticGeneralMetadata # type: ignore
- def _update_fields_from_docstrings(cls: type[Any], fields: dict[str, FieldInfo], config_wrapper: ConfigWrapper) -> None:
- if config_wrapper.use_attribute_docstrings:
- fields_docs = extract_docstrings_from_cls(cls)
- for ann_name, field_info in fields.items():
- if field_info.description is None and ann_name in fields_docs:
- field_info.description = fields_docs[ann_name]
- def collect_model_fields( # noqa: C901
- cls: type[BaseModel],
- bases: tuple[type[Any], ...],
- config_wrapper: ConfigWrapper,
- ns_resolver: NsResolver | None,
- *,
- typevars_map: dict[Any, Any] | None = None,
- ) -> tuple[dict[str, FieldInfo], set[str]]:
- """Collect the fields of a nascent pydantic model.
- Also collect the names of any ClassVars present in the type hints.
- The returned value is a tuple of two items: the fields dict, and the set of ClassVar names.
- Args:
- cls: BaseModel or dataclass.
- bases: Parents of the class, generally `cls.__bases__`.
- config_wrapper: The config wrapper instance.
- ns_resolver: Namespace resolver to use when getting model annotations.
- typevars_map: A dictionary mapping type variables to their concrete types.
- Returns:
- A tuple contains fields and class variables.
- Raises:
- NameError:
- - If there is a conflict between a field name and protected namespaces.
- - If there is a field other than `root` in `RootModel`.
- - If a field shadows an attribute in the parent model.
- """
- BaseModel = import_cached_base_model()
- FieldInfo_ = import_cached_field_info()
- parent_fields_lookup: dict[str, FieldInfo] = {}
- for base in reversed(bases):
- if model_fields := getattr(base, '__pydantic_fields__', None):
- parent_fields_lookup.update(model_fields)
- type_hints = _typing_extra.get_model_type_hints(cls, ns_resolver=ns_resolver)
- # https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older
- # annotations is only used for finding fields in parent classes
- annotations = cls.__dict__.get('__annotations__', {})
- fields: dict[str, FieldInfo] = {}
- class_vars: set[str] = set()
- for ann_name, (ann_type, evaluated) in type_hints.items():
- if ann_name == 'model_config':
- # We never want to treat `model_config` as a field
- # Note: we may need to change this logic if/when we introduce a `BareModel` class with no
- # protected namespaces (where `model_config` might be allowed as a field name)
- continue
- for protected_namespace in config_wrapper.protected_namespaces:
- ns_violation: bool = False
- if isinstance(protected_namespace, Pattern):
- ns_violation = protected_namespace.match(ann_name) is not None
- elif isinstance(protected_namespace, str):
- ns_violation = ann_name.startswith(protected_namespace)
- if ns_violation:
- for b in bases:
- if hasattr(b, ann_name):
- if not (issubclass(b, BaseModel) and ann_name in getattr(b, '__pydantic_fields__', {})):
- raise NameError(
- f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}'
- f' of protected namespace "{protected_namespace}".'
- )
- else:
- valid_namespaces = ()
- for pn in config_wrapper.protected_namespaces:
- if isinstance(pn, Pattern):
- if not pn.match(ann_name):
- valid_namespaces += (f're.compile({pn.pattern})',)
- else:
- if not ann_name.startswith(pn):
- valid_namespaces += (pn,)
- warnings.warn(
- f'Field "{ann_name}" in {cls.__name__} has conflict with protected namespace "{protected_namespace}".'
- '\n\nYou may be able to resolve this warning by setting'
- f" `model_config['protected_namespaces'] = {valid_namespaces}`.",
- UserWarning,
- )
- if _typing_extra.is_classvar_annotation(ann_type):
- class_vars.add(ann_name)
- continue
- if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)):
- class_vars.add(ann_name)
- continue
- if not is_valid_field_name(ann_name):
- continue
- if cls.__pydantic_root_model__ and ann_name != 'root':
- raise NameError(
- f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`"
- )
- # when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get
- # "... shadows an attribute" warnings
- generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')
- for base in bases:
- dataclass_fields = {
- field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())
- }
- if hasattr(base, ann_name):
- if base is generic_origin:
- # Don't warn when "shadowing" of attributes in parametrized generics
- continue
- if ann_name in dataclass_fields:
- # Don't warn when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set
- # on the class instance.
- continue
- if ann_name not in annotations:
- # Don't warn when a field exists in a parent class but has not been defined in the current class
- continue
- warnings.warn(
- f'Field name "{ann_name}" in "{cls.__qualname__}" shadows an attribute in parent '
- f'"{base.__qualname__}"',
- UserWarning,
- )
- try:
- default = getattr(cls, ann_name, PydanticUndefined)
- if default is PydanticUndefined:
- raise AttributeError
- except AttributeError:
- if ann_name in annotations:
- field_info = FieldInfo_.from_annotation(ann_type)
- field_info.evaluated = evaluated
- else:
- # if field has no default value and is not in __annotations__ this means that it is
- # defined in a base class and we can take it from there
- if ann_name in parent_fields_lookup:
- # The field was present on one of the (possibly multiple) base classes
- # copy the field to make sure typevar substitutions don't cause issues with the base classes
- field_info = copy(parent_fields_lookup[ann_name])
- else:
- # The field was not found on any base classes; this seems to be caused by fields not getting
- # generated thanks to models not being fully defined while initializing recursive models.
- # Nothing stops us from just creating a new FieldInfo for this type hint, so we do this.
- field_info = FieldInfo_.from_annotation(ann_type)
- field_info.evaluated = evaluated
- else:
- _warn_on_nested_alias_in_annotation(ann_type, ann_name)
- if isinstance(default, FieldInfo_) and ismethoddescriptor(default.default):
- # the `getattr` call above triggers a call to `__get__` for descriptors, so we do
- # the same if the `= field(default=...)` form is used. Note that we only do this
- # for method descriptors for now, we might want to extend this to any descriptor
- # in the future (by simply checking for `hasattr(default.default, '__get__')`).
- default.default = default.default.__get__(None, cls)
- field_info = FieldInfo_.from_annotated_attribute(ann_type, default)
- field_info.evaluated = evaluated
- # attributes which are fields are removed from the class namespace:
- # 1. To match the behaviour of annotation-only fields
- # 2. To avoid false positives in the NameError check above
- try:
- delattr(cls, ann_name)
- except AttributeError:
- pass # indicates the attribute was on a parent class
- # Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__
- # to make sure the decorators have already been built for this exact class
- decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']
- if ann_name in decorators.computed_fields:
- raise ValueError("you can't override a field with a computed field")
- fields[ann_name] = field_info
- if typevars_map:
- for field in fields.values():
- field.apply_typevars_map(typevars_map)
- _update_fields_from_docstrings(cls, fields, config_wrapper)
- return fields, class_vars
- def _warn_on_nested_alias_in_annotation(ann_type: type[Any], ann_name: str) -> None:
- FieldInfo = import_cached_field_info()
- args = getattr(ann_type, '__args__', None)
- if args:
- for anno_arg in args:
- if _typing_extra.is_annotated(anno_arg):
- for anno_type_arg in _typing_extra.get_args(anno_arg):
- if isinstance(anno_type_arg, FieldInfo) and anno_type_arg.alias is not None:
- warnings.warn(
- f'`alias` specification on field "{ann_name}" must be set on outermost annotation to take effect.',
- UserWarning,
- )
- return
- def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool:
- FieldInfo = import_cached_field_info()
- if not _typing_extra.is_finalvar(type_):
- return False
- elif val is PydanticUndefined:
- return False
- elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None):
- return False
- else:
- return True
- def collect_dataclass_fields(
- cls: type[StandardDataclass],
- *,
- ns_resolver: NsResolver | None = None,
- typevars_map: dict[Any, Any] | None = None,
- config_wrapper: ConfigWrapper | None = None,
- ) -> dict[str, FieldInfo]:
- """Collect the fields of a dataclass.
- Args:
- cls: dataclass.
- ns_resolver: Namespace resolver to use when getting dataclass annotations.
- Defaults to an empty instance.
- typevars_map: A dictionary mapping type variables to their concrete types.
- config_wrapper: The config wrapper instance.
- Returns:
- The dataclass fields.
- """
- FieldInfo_ = import_cached_field_info()
- fields: dict[str, FieldInfo] = {}
- ns_resolver = ns_resolver or NsResolver()
- dataclass_fields = cls.__dataclass_fields__
- # The logic here is similar to `_typing_extra.get_cls_type_hints`,
- # although we do it manually as stdlib dataclasses already have annotations
- # collected in each class:
- for base in reversed(cls.__mro__):
- if not dataclasses.is_dataclass(base):
- continue
- with ns_resolver.push(base):
- for ann_name, dataclass_field in dataclass_fields.items():
- if ann_name not in base.__dict__.get('__annotations__', {}):
- # `__dataclass_fields__`contains every field, even the ones from base classes.
- # Only collect the ones defined on `base`.
- continue
- globalns, localns = ns_resolver.types_namespace
- ann_type, _ = _typing_extra.try_eval_type(dataclass_field.type, globalns, localns)
- if _typing_extra.is_classvar_annotation(ann_type):
- continue
- if (
- not dataclass_field.init
- and dataclass_field.default is dataclasses.MISSING
- and dataclass_field.default_factory is dataclasses.MISSING
- ):
- # TODO: We should probably do something with this so that validate_assignment behaves properly
- # Issue: https://github.com/pydantic/pydantic/issues/5470
- continue
- if isinstance(dataclass_field.default, FieldInfo_):
- if dataclass_field.default.init_var:
- if dataclass_field.default.init is False:
- raise PydanticUserError(
- f'Dataclass field {ann_name} has init=False and init_var=True, but these are mutually exclusive.',
- code='clashing-init-and-init-var',
- )
- # TODO: same note as above re validate_assignment
- continue
- field_info = FieldInfo_.from_annotated_attribute(ann_type, dataclass_field.default)
- else:
- field_info = FieldInfo_.from_annotated_attribute(ann_type, dataclass_field)
- fields[ann_name] = field_info
- if field_info.default is not PydanticUndefined and isinstance(
- getattr(cls, ann_name, field_info), FieldInfo_
- ):
- # We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo
- setattr(cls, ann_name, field_info.default)
- if typevars_map:
- for field in fields.values():
- # We don't pass any ns, as `field.annotation`
- # was already evaluated. TODO: is this method relevant?
- # Can't we juste use `_generics.replace_types`?
- field.apply_typevars_map(typevars_map)
- if config_wrapper is not None:
- _update_fields_from_docstrings(cls, fields, config_wrapper)
- return fields
- def is_valid_field_name(name: str) -> bool:
- return not name.startswith('_')
- def is_valid_privateattr_name(name: str) -> bool:
- return name.startswith('_') and not name.startswith('__')
- def takes_validated_data_argument(
- default_factory: Callable[[], Any] | Callable[[dict[str, Any]], Any],
- ) -> TypeIs[Callable[[dict[str, Any]], Any]]:
- """Whether the provided default factory callable has a validated data parameter."""
- try:
- sig = signature(default_factory)
- except (ValueError, TypeError):
- # `inspect.signature` might not be able to infer a signature, e.g. with C objects.
- # In this case, we assume no data argument is present:
- return False
- parameters = list(sig.parameters.values())
- return len(parameters) == 1 and can_be_positional(parameters[0]) and parameters[0].default is Parameter.empty
|