| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 |
- """
- Unit test for DIRECT optimization algorithm.
- """
- from numpy.testing import (assert_allclose,
- assert_array_less)
- import pytest
- import numpy as np
- from scipy.optimize import direct, Bounds
- class TestDIRECT:
- def setup_method(self):
- self.fun_calls = 0
- self.bounds_sphere = 4*[(-2, 3)]
- self.optimum_sphere_pos = np.zeros((4, ))
- self.optimum_sphere = 0.0
- self.bounds_stylinski_tang = Bounds([-4., -4.], [4., 4.])
- self.maxiter = 1000
- # test functions
- def sphere(self, x):
- self.fun_calls += 1
- return np.square(x).sum()
- def inv(self, x):
- if np.sum(x) == 0:
- raise ZeroDivisionError()
- return 1/np.sum(x)
- def nan_fun(self, x):
- return np.nan
- def inf_fun(self, x):
- return np.inf
- def styblinski_tang(self, pos):
- x, y = pos
- return 0.5 * (x**4 - 16 * x**2 + 5 * x + y**4 - 16 * y**2 + 5 * y)
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_direct(self, locally_biased):
- res = direct(self.sphere, self.bounds_sphere,
- locally_biased=locally_biased)
- # test accuracy
- assert_allclose(res.x, self.optimum_sphere_pos,
- rtol=1e-3, atol=1e-3)
- assert_allclose(res.fun, self.optimum_sphere, atol=1e-5, rtol=1e-5)
- # test that result lies within bounds
- _bounds = np.asarray(self.bounds_sphere)
- assert_array_less(_bounds[:, 0], res.x)
- assert_array_less(res.x, _bounds[:, 1])
- # test number of function evaluations. Original DIRECT overshoots by
- # up to 500 evaluations in last iteration
- assert res.nfev <= 1000 * (len(self.bounds_sphere) + 1)
- # test that number of function evaluations is correct
- assert res.nfev == self.fun_calls
- # test that number of iterations is below supplied maximum
- assert res.nit <= self.maxiter
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_direct_callback(self, locally_biased):
- # test that callback does not change the result
- res = direct(self.sphere, self.bounds_sphere,
- locally_biased=locally_biased)
- def callback(x):
- x = 2*x
- dummy = np.square(x)
- print("DIRECT minimization algorithm callback test")
- return dummy
- res_callback = direct(self.sphere, self.bounds_sphere,
- locally_biased=locally_biased,
- callback=callback)
- assert_allclose(res.x, res_callback.x)
- assert res.nit == res_callback.nit
- assert res.nfev == res_callback.nfev
- assert res.status == res_callback.status
- assert res.success == res_callback.success
- assert res.fun == res_callback.fun
- assert_allclose(res.x, res_callback.x)
- assert res.message == res_callback.message
- # test accuracy
- assert_allclose(res_callback.x, self.optimum_sphere_pos,
- rtol=1e-3, atol=1e-3)
- assert_allclose(res_callback.fun, self.optimum_sphere,
- atol=1e-5, rtol=1e-5)
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_exception(self, locally_biased):
- bounds = 4*[(-10, 10)]
- with pytest.raises(ZeroDivisionError):
- direct(self.inv, bounds=bounds,
- locally_biased=locally_biased)
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_nan(self, locally_biased):
- bounds = 4*[(-10, 10)]
- direct(self.nan_fun, bounds=bounds,
- locally_biased=locally_biased)
- @pytest.mark.parametrize("len_tol", [1e-3, 1e-4])
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_len_tol(self, len_tol, locally_biased):
- bounds = 4*[(-10., 10.)]
- res = direct(self.sphere, bounds=bounds, len_tol=len_tol,
- vol_tol=1e-30, locally_biased=locally_biased)
- assert res.status == 5
- assert res.success
- assert_allclose(res.x, np.zeros((4, )))
- message = ("The side length measure of the hyperrectangle containing "
- "the lowest function value found is below "
- f"len_tol={len_tol}")
- assert res.message == message
- @pytest.mark.parametrize("vol_tol", [1e-6, 1e-8])
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_vol_tol(self, vol_tol, locally_biased):
- bounds = 4*[(-10., 10.)]
- res = direct(self.sphere, bounds=bounds, vol_tol=vol_tol,
- len_tol=0., locally_biased=locally_biased)
- assert res.status == 4
- assert res.success
- assert_allclose(res.x, np.zeros((4, )))
- message = ("The volume of the hyperrectangle containing the lowest "
- f"function value found is below vol_tol={vol_tol}")
- assert res.message == message
- @pytest.mark.parametrize("f_min_rtol", [1e-3, 1e-5, 1e-7])
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_f_min(self, f_min_rtol, locally_biased):
- # test that desired function value is reached within
- # relative tolerance of f_min_rtol
- f_min = 1.
- bounds = 4*[(-2., 10.)]
- res = direct(self.sphere, bounds=bounds, f_min=f_min,
- f_min_rtol=f_min_rtol,
- locally_biased=locally_biased)
- assert res.status == 3
- assert res.success
- assert res.fun < f_min * (1. + f_min_rtol)
- message = ("The best function value found is within a relative "
- f"error={f_min_rtol} of the (known) global optimum f_min")
- assert res.message == message
- def circle_with_args(self, x, a, b):
- return np.square(x[0] - a) + np.square(x[1] - b).sum()
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_f_circle_with_args(self, locally_biased):
- bounds = 2*[(-2.0, 2.0)]
- res = direct(self.circle_with_args, bounds, args=(1, 1), maxfun=1250,
- locally_biased=locally_biased)
- assert_allclose(res.x, np.array([1., 1.]), rtol=1e-5)
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_failure_maxfun(self, locally_biased):
- # test that if optimization runs for the maximal number of
- # evaluations, success = False is returned
- maxfun = 100
- result = direct(self.styblinski_tang, self.bounds_stylinski_tang,
- maxfun=maxfun, locally_biased=locally_biased)
- assert result.success is False
- assert result.status == 1
- assert result.nfev >= maxfun
- message = ("Number of function evaluations done is "
- f"larger than maxfun={maxfun}")
- assert result.message == message
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_failure_maxiter(self, locally_biased):
- # test that if optimization runs for the maximal number of
- # iterations, success = False is returned
- maxiter = 10
- result = direct(self.styblinski_tang, self.bounds_stylinski_tang,
- maxiter=maxiter, locally_biased=locally_biased)
- assert result.success is False
- assert result.status == 2
- assert result.nit >= maxiter
- message = f"Number of iterations is larger than maxiter={maxiter}"
- assert result.message == message
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_bounds_variants(self, locally_biased):
- # test that new and old bounds yield same result
- lb = [-6., 1., -5.]
- ub = [-1., 3., 5.]
- x_opt = np.array([-1., 1., 0.])
- bounds_old = list(zip(lb, ub))
- bounds_new = Bounds(lb, ub)
- res_old_bounds = direct(self.sphere, bounds_old,
- locally_biased=locally_biased)
- res_new_bounds = direct(self.sphere, bounds_new,
- locally_biased=locally_biased)
- assert res_new_bounds.nfev == res_old_bounds.nfev
- assert res_new_bounds.message == res_old_bounds.message
- assert res_new_bounds.success == res_old_bounds.success
- assert res_new_bounds.nit == res_old_bounds.nit
- assert_allclose(res_new_bounds.x, res_old_bounds.x)
- assert_allclose(res_new_bounds.x, x_opt, rtol=1e-2)
- @pytest.mark.parametrize("locally_biased", [True, False])
- @pytest.mark.parametrize("eps", [1e-5, 1e-4, 1e-3])
- def test_epsilon(self, eps, locally_biased):
- result = direct(self.styblinski_tang, self.bounds_stylinski_tang,
- eps=eps, vol_tol=1e-6,
- locally_biased=locally_biased)
- assert result.status == 4
- assert result.success
- @pytest.mark.xslow
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_no_segmentation_fault(self, locally_biased):
- # test that an excessive number of function evaluations
- # does not result in segmentation fault
- bounds = [(-5., 20.)] * 100
- result = direct(self.sphere, bounds, maxfun=10000000,
- maxiter=1000000, locally_biased=locally_biased)
- assert result is not None
- @pytest.mark.parametrize("locally_biased", [True, False])
- def test_inf_fun(self, locally_biased):
- # test that an objective value of infinity does not crash DIRECT
- bounds = [(-5., 5.)] * 2
- result = direct(self.inf_fun, bounds,
- locally_biased=locally_biased)
- assert result is not None
- @pytest.mark.parametrize("len_tol", [-1, 2])
- def test_len_tol_validation(self, len_tol):
- error_msg = "len_tol must be between 0 and 1."
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- len_tol=len_tol)
- @pytest.mark.parametrize("vol_tol", [-1, 2])
- def test_vol_tol_validation(self, vol_tol):
- error_msg = "vol_tol must be between 0 and 1."
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- vol_tol=vol_tol)
- @pytest.mark.parametrize("f_min_rtol", [-1, 2])
- def test_fmin_rtol_validation(self, f_min_rtol):
- error_msg = "f_min_rtol must be between 0 and 1."
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- f_min_rtol=f_min_rtol, f_min=0.)
- @pytest.mark.parametrize("maxfun", [1.5, "string", (1, 2)])
- def test_maxfun_wrong_type(self, maxfun):
- error_msg = "maxfun must be of type int."
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- maxfun=maxfun)
- @pytest.mark.parametrize("maxiter", [1.5, "string", (1, 2)])
- def test_maxiter_wrong_type(self, maxiter):
- error_msg = "maxiter must be of type int."
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- maxiter=maxiter)
- def test_negative_maxiter(self):
- error_msg = "maxiter must be > 0."
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- maxiter=-1)
- def test_negative_maxfun(self):
- error_msg = "maxfun must be > 0."
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- maxfun=-1)
- @pytest.mark.parametrize("bounds", ["bounds", 2., 0])
- def test_invalid_bounds_type(self, bounds):
- error_msg = ("bounds must be a sequence or "
- "instance of Bounds class")
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, bounds)
- @pytest.mark.parametrize("bounds",
- [Bounds([-1., -1], [-2, 1]),
- Bounds([-np.nan, -1], [-2, np.nan]),
- ]
- )
- def test_incorrect_bounds(self, bounds):
- error_msg = 'Bounds are not consistent min < max'
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, bounds)
- def test_inf_bounds(self):
- error_msg = 'Bounds must not be inf.'
- bounds = Bounds([-np.inf, -1], [-2, np.inf])
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, bounds)
- @pytest.mark.parametrize("locally_biased", ["bias", [0, 0], 2.])
- def test_locally_biased_validation(self, locally_biased):
- error_msg = 'locally_biased must be True or False.'
- with pytest.raises(ValueError, match=error_msg):
- direct(self.styblinski_tang, self.bounds_stylinski_tang,
- locally_biased=locally_biased)
|