| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- from __future__ import annotations
- import csv
- import logging
- import os
- from contextlib import nullcontext
- from typing import TYPE_CHECKING
- import numpy as np
- from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator
- if TYPE_CHECKING:
- from sentence_transformers.SentenceTransformer import SentenceTransformer
- logger = logging.getLogger(__name__)
- class MSEEvaluatorFromDataFrame(SentenceEvaluator):
- """
- Computes the mean squared error (x100) between the computed sentence embedding and some target sentence embedding.
- Args:
- dataframe (List[Dict[str, str]]): It must have the following format. Rows contains different, parallel sentences.
- Columns are the respective language codes::
- [{'en': 'My sentence in English', 'es': 'Oración en español', 'fr': 'Phrase en français'...},
- {'en': 'My second sentence', ...}]
- teacher_model (SentenceTransformer): The teacher model used to compute the sentence embeddings.
- combinations (List[Tuple[str, str]]): Must be of the format ``[('en', 'es'), ('en', 'fr'), ...]``.
- First entry in a tuple is the source language. The sentence in the respective language will be fetched from
- the dataframe and passed to the teacher model. Second entry in a tuple the the target language. Sentence
- will be fetched from the dataframe and passed to the student model
- batch_size (int, optional): The batch size to compute sentence embeddings. Defaults to 8.
- name (str, optional): The name of the evaluator. Defaults to "".
- write_csv (bool, optional): Whether to write the results to a CSV file. Defaults to True.
- truncate_dim (Optional[int], optional): The dimension to truncate sentence embeddings to. If None, uses the model's
- current truncation dimension. Defaults to None.
- """
- def __init__(
- self,
- dataframe: list[dict[str, str]],
- teacher_model: SentenceTransformer,
- combinations: list[tuple[str, str]],
- batch_size: int = 8,
- name: str = "",
- write_csv: bool = True,
- truncate_dim: int | None = None,
- ):
- super().__init__()
- self.combinations = combinations
- self.name = name
- self.batch_size = batch_size
- if name:
- name = "_" + name
- self.csv_file = "mse_evaluation" + name + "_results.csv"
- self.csv_headers = ["epoch", "steps"]
- self.primary_metric = "negative_mse"
- self.write_csv = write_csv
- self.truncate_dim = truncate_dim
- self.data = {}
- logger.info("Compute teacher embeddings")
- all_source_sentences = set()
- for src_lang, trg_lang in self.combinations:
- src_sentences = []
- trg_sentences = []
- for row in dataframe:
- if row[src_lang].strip() != "" and row[trg_lang].strip() != "":
- all_source_sentences.add(row[src_lang])
- src_sentences.append(row[src_lang])
- trg_sentences.append(row[trg_lang])
- self.data[(src_lang, trg_lang)] = (src_sentences, trg_sentences)
- self.csv_headers.append(f"{src_lang}-{trg_lang}")
- all_source_sentences = list(all_source_sentences)
- with nullcontext() if self.truncate_dim is None else teacher_model.truncate_sentence_embeddings(
- self.truncate_dim
- ):
- all_src_embeddings = teacher_model.encode(all_source_sentences, batch_size=self.batch_size)
- self.teacher_embeddings = {sent: emb for sent, emb in zip(all_source_sentences, all_src_embeddings)}
- def __call__(
- self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1
- ) -> dict[str, float]:
- model.eval()
- mse_scores = []
- for src_lang, trg_lang in self.combinations:
- src_sentences, trg_sentences = self.data[(src_lang, trg_lang)]
- src_embeddings = np.asarray([self.teacher_embeddings[sent] for sent in src_sentences])
- with nullcontext() if self.truncate_dim is None else model.truncate_sentence_embeddings(self.truncate_dim):
- trg_embeddings = np.asarray(model.encode(trg_sentences, batch_size=self.batch_size))
- mse = ((src_embeddings - trg_embeddings) ** 2).mean()
- mse *= 100
- mse_scores.append(mse)
- logger.info(f"MSE evaluation on {self.name} dataset - {src_lang}-{trg_lang}:")
- logger.info(f"MSE (*100):\t{mse:4f}")
- if output_path is not None and self.write_csv:
- csv_path = os.path.join(output_path, self.csv_file)
- output_file_exists = os.path.isfile(csv_path)
- with open(csv_path, newline="", mode="a" if output_file_exists else "w", encoding="utf-8") as f:
- writer = csv.writer(f)
- if not output_file_exists:
- writer.writerow(self.csv_headers)
- writer.writerow([epoch, steps] + mse_scores)
- # Return negative score as SentenceTransformers maximizes the performance
- metrics = {"negative_mse": -np.mean(mse_scores).item()}
- metrics = self.prefix_name_to_metrics(metrics, self.name)
- self.store_metrics_in_model_card_data(model, metrics)
- return metrics
- @property
- def description(self) -> str:
- return "Knowledge Distillation"
|