| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- from __future__ import annotations
- import json
- import os
- import torch
- from safetensors.torch import load_model as load_safetensors_model
- from safetensors.torch import save_model as save_safetensors_model
- from torch import nn
- class CNN(nn.Module):
- """CNN-layer with multiple kernel-sizes over the word embeddings"""
- def __init__(
- self,
- in_word_embedding_dimension: int,
- out_channels: int = 256,
- kernel_sizes: list[int] = [1, 3, 5],
- stride_sizes: list[int] = None,
- ):
- nn.Module.__init__(self)
- self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"]
- self.in_word_embedding_dimension = in_word_embedding_dimension
- self.out_channels = out_channels
- self.kernel_sizes = kernel_sizes
- self.embeddings_dimension = out_channels * len(kernel_sizes)
- self.convs = nn.ModuleList()
- in_channels = in_word_embedding_dimension
- if stride_sizes is None:
- stride_sizes = [1] * len(kernel_sizes)
- for kernel_size, stride in zip(kernel_sizes, stride_sizes):
- padding_size = int((kernel_size - 1) / 2)
- conv = nn.Conv1d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding_size,
- )
- self.convs.append(conv)
- def forward(self, features):
- token_embeddings = features["token_embeddings"]
- token_embeddings = token_embeddings.transpose(1, -1)
- vectors = [conv(token_embeddings) for conv in self.convs]
- out = torch.cat(vectors, 1).transpose(1, -1)
- features.update({"token_embeddings": out})
- return features
- def get_word_embedding_dimension(self) -> int:
- return self.embeddings_dimension
- def tokenize(self, text: str, **kwargs) -> list[int]:
- raise NotImplementedError()
- def save(self, output_path: str, safe_serialization: bool = True):
- with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut:
- json.dump(self.get_config_dict(), fOut, indent=2)
- if safe_serialization:
- save_safetensors_model(self, os.path.join(output_path, "model.safetensors"))
- else:
- torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
- def get_config_dict(self):
- return {key: self.__dict__[key] for key in self.config_keys}
- @staticmethod
- def load(input_path: str):
- with open(os.path.join(input_path, "cnn_config.json")) as fIn:
- config = json.load(fIn)
- model = CNN(**config)
- if os.path.exists(os.path.join(input_path, "model.safetensors")):
- load_safetensors_model(model, os.path.join(input_path, "model.safetensors"))
- else:
- model.load_state_dict(
- torch.load(
- os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True
- )
- )
- return model
|