| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- from __future__ import annotations
- import json
- import os
- import torch
- from safetensors.torch import load_model as load_safetensors_model
- from safetensors.torch import save_model as save_safetensors_model
- from torch import Tensor, nn
- class WeightedLayerPooling(nn.Module):
- """Token embeddings are weighted mean of their different hidden layer representations"""
- def __init__(
- self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None
- ):
- super().__init__()
- self.config_keys = ["word_embedding_dimension", "layer_start", "num_hidden_layers"]
- self.word_embedding_dimension = word_embedding_dimension
- self.layer_start = layer_start
- self.num_hidden_layers = num_hidden_layers
- self.layer_weights = (
- layer_weights
- if layer_weights is not None
- else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float))
- )
- def forward(self, features: dict[str, Tensor]):
- ft_all_layers = features["all_layer_embeddings"]
- all_layer_embedding = torch.stack(ft_all_layers)
- all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output
- weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size())
- weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum()
- features.update({"token_embeddings": weighted_average})
- return features
- def get_word_embedding_dimension(self):
- return self.word_embedding_dimension
- def get_config_dict(self):
- return {key: self.__dict__[key] for key in self.config_keys}
- def save(self, output_path: str, safe_serialization: bool = True):
- with open(os.path.join(output_path, "config.json"), "w") as fOut:
- json.dump(self.get_config_dict(), fOut, indent=2)
- if safe_serialization:
- save_safetensors_model(self, os.path.join(output_path, "model.safetensors"))
- else:
- torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
- @staticmethod
- def load(input_path):
- with open(os.path.join(input_path, "config.json")) as fIn:
- config = json.load(fIn)
- model = WeightedLayerPooling(**config)
- if os.path.exists(os.path.join(input_path, "model.safetensors")):
- load_safetensors_model(model, os.path.join(input_path, "model.safetensors"))
- else:
- model.load_state_dict(
- torch.load(
- os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True
- )
- )
- return model
|