| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- from __future__ import annotations
- import collections
- import json
- import logging
- import os
- import string
- from typing import Iterable
- from transformers.utils.import_utils import NLTK_IMPORT_ERROR, is_nltk_available
- from .WordTokenizer import ENGLISH_STOP_WORDS, WordTokenizer
- logger = logging.getLogger(__name__)
- class PhraseTokenizer(WordTokenizer):
- """Tokenizes the text with respect to existent phrases in the vocab.
- This tokenizers respects phrases that are in the vocab. Phrases are separated with 'ngram_separator', for example,
- in Google News word2vec file, ngrams are separated with a _ like New_York. These phrases are detected in text and merged as one special token. (New York is the ... => [New_York, is, the])
- """
- def __init__(
- self,
- vocab: Iterable[str] = [],
- stop_words: Iterable[str] = ENGLISH_STOP_WORDS,
- do_lower_case: bool = False,
- ngram_separator: str = "_",
- max_ngram_length: int = 5,
- ):
- if not is_nltk_available():
- raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__))
- self.stop_words = set(stop_words)
- self.do_lower_case = do_lower_case
- self.ngram_separator = ngram_separator
- self.max_ngram_length = max_ngram_length
- self.set_vocab(vocab)
- def get_vocab(self):
- return self.vocab
- def set_vocab(self, vocab: Iterable[str]):
- self.vocab = vocab
- self.word2idx = collections.OrderedDict([(word, idx) for idx, word in enumerate(vocab)])
- # Check for ngram in vocab
- self.ngram_lookup = set()
- self.ngram_lengths = set()
- for word in vocab:
- if self.ngram_separator is not None and self.ngram_separator in word:
- # Sum words might me malformed in e.g. google news word2vec, containing two or more _ after each other
- ngram_count = word.count(self.ngram_separator) + 1
- if self.ngram_separator + self.ngram_separator not in word and ngram_count <= self.max_ngram_length:
- self.ngram_lookup.add(word)
- self.ngram_lengths.add(ngram_count)
- if len(vocab) > 0:
- logger.info(f"PhraseTokenizer - Phrase ngram lengths: {self.ngram_lengths}")
- logger.info(f"PhraseTokenizer - Num phrases: {len(self.ngram_lookup)}")
- def tokenize(self, text: str, **kwargs) -> list[int]:
- from nltk import word_tokenize
- tokens = word_tokenize(text, preserve_line=True)
- # phrase detection
- for ngram_len in sorted(self.ngram_lengths, reverse=True):
- idx = 0
- while idx <= len(tokens) - ngram_len:
- ngram = self.ngram_separator.join(tokens[idx : idx + ngram_len])
- if ngram in self.ngram_lookup:
- tokens[idx : idx + ngram_len] = [ngram]
- elif ngram.lower() in self.ngram_lookup:
- tokens[idx : idx + ngram_len] = [ngram.lower()]
- idx += 1
- # Map tokens to idx, filter stop words
- tokens_filtered = []
- for token in tokens:
- if token in self.stop_words:
- continue
- elif token in self.word2idx:
- tokens_filtered.append(self.word2idx[token])
- continue
- token = token.lower()
- if token in self.stop_words:
- continue
- elif token in self.word2idx:
- tokens_filtered.append(self.word2idx[token])
- continue
- token = token.strip(string.punctuation)
- if token in self.stop_words:
- continue
- elif len(token) > 0 and token in self.word2idx:
- tokens_filtered.append(self.word2idx[token])
- continue
- return tokens_filtered
- def save(self, output_path: str):
- with open(os.path.join(output_path, "phrasetokenizer_config.json"), "w") as fOut:
- json.dump(
- {
- "vocab": list(self.word2idx.keys()),
- "stop_words": list(self.stop_words),
- "do_lower_case": self.do_lower_case,
- "ngram_separator": self.ngram_separator,
- "max_ngram_length": self.max_ngram_length,
- },
- fOut,
- )
- @staticmethod
- def load(input_path: str):
- with open(os.path.join(input_path, "phrasetokenizer_config.json")) as fIn:
- config = json.load(fIn)
- return PhraseTokenizer(**config)
|