| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- """Testing for Gaussian process classification """
- # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
- # License: BSD 3 clause
- import warnings
- import numpy as np
- import pytest
- from scipy.optimize import approx_fprime
- from sklearn.exceptions import ConvergenceWarning
- from sklearn.gaussian_process import GaussianProcessClassifier
- from sklearn.gaussian_process.kernels import (
- RBF,
- CompoundKernel,
- WhiteKernel,
- )
- from sklearn.gaussian_process.kernels import (
- ConstantKernel as C,
- )
- from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
- from sklearn.utils._testing import assert_almost_equal, assert_array_equal
- def f(x):
- return np.sin(x)
- X = np.atleast_2d(np.linspace(0, 10, 30)).T
- X2 = np.atleast_2d([2.0, 4.0, 5.5, 6.5, 7.5]).T
- y = np.array(f(X).ravel() > 0, dtype=int)
- fX = f(X).ravel()
- y_mc = np.empty(y.shape, dtype=int) # multi-class
- y_mc[fX < -0.35] = 0
- y_mc[(fX >= -0.35) & (fX < 0.35)] = 1
- y_mc[fX > 0.35] = 2
- fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
- kernels = [
- RBF(length_scale=0.1),
- fixed_kernel,
- RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
- C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
- ]
- non_fixed_kernels = [kernel for kernel in kernels if kernel != fixed_kernel]
- @pytest.mark.parametrize("kernel", kernels)
- def test_predict_consistent(kernel):
- # Check binary predict decision has also predicted probability above 0.5.
- gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
- assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5)
- def test_predict_consistent_structured():
- # Check binary predict decision has also predicted probability above 0.5.
- X = ["A", "AB", "B"]
- y = np.array([True, False, True])
- kernel = MiniSeqKernel(baseline_similarity_bounds="fixed")
- gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
- assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5)
- @pytest.mark.parametrize("kernel", non_fixed_kernels)
- def test_lml_improving(kernel):
- # Test that hyperparameter-tuning improves log-marginal likelihood.
- gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
- assert gpc.log_marginal_likelihood(gpc.kernel_.theta) > gpc.log_marginal_likelihood(
- kernel.theta
- )
- @pytest.mark.parametrize("kernel", kernels)
- def test_lml_precomputed(kernel):
- # Test that lml of optimized kernel is stored correctly.
- gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
- assert_almost_equal(
- gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7
- )
- @pytest.mark.parametrize("kernel", kernels)
- def test_lml_without_cloning_kernel(kernel):
- # Test that clone_kernel=False has side-effects of kernel.theta.
- gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
- input_theta = np.ones(gpc.kernel_.theta.shape, dtype=np.float64)
- gpc.log_marginal_likelihood(input_theta, clone_kernel=False)
- assert_almost_equal(gpc.kernel_.theta, input_theta, 7)
- @pytest.mark.parametrize("kernel", non_fixed_kernels)
- def test_converged_to_local_maximum(kernel):
- # Test that we are in local maximum after hyperparameter-optimization.
- gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
- lml, lml_gradient = gpc.log_marginal_likelihood(gpc.kernel_.theta, True)
- assert np.all(
- (np.abs(lml_gradient) < 1e-4)
- | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0])
- | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1])
- )
- @pytest.mark.parametrize("kernel", kernels)
- def test_lml_gradient(kernel):
- # Compare analytic and numeric gradient of log marginal likelihood.
- gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
- lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True)
- lml_gradient_approx = approx_fprime(
- kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10
- )
- assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
- def test_random_starts(global_random_seed):
- # Test that an increasing number of random-starts of GP fitting only
- # increases the log marginal likelihood of the chosen theta.
- n_samples, n_features = 25, 2
- rng = np.random.RandomState(global_random_seed)
- X = rng.randn(n_samples, n_features) * 2 - 1
- y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0
- kernel = C(1.0, (1e-2, 1e2)) * RBF(
- length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e2)] * n_features
- )
- last_lml = -np.inf
- for n_restarts_optimizer in range(5):
- gp = GaussianProcessClassifier(
- kernel=kernel,
- n_restarts_optimizer=n_restarts_optimizer,
- random_state=global_random_seed,
- ).fit(X, y)
- lml = gp.log_marginal_likelihood(gp.kernel_.theta)
- assert lml > last_lml - np.finfo(np.float32).eps
- last_lml = lml
- @pytest.mark.parametrize("kernel", non_fixed_kernels)
- def test_custom_optimizer(kernel, global_random_seed):
- # Test that GPC can use externally defined optimizers.
- # Define a dummy optimizer that simply tests 10 random hyperparameters
- def optimizer(obj_func, initial_theta, bounds):
- rng = np.random.RandomState(global_random_seed)
- theta_opt, func_min = initial_theta, obj_func(
- initial_theta, eval_gradient=False
- )
- for _ in range(10):
- theta = np.atleast_1d(
- rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))
- )
- f = obj_func(theta, eval_gradient=False)
- if f < func_min:
- theta_opt, func_min = theta, f
- return theta_opt, func_min
- gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer)
- gpc.fit(X, y_mc)
- # Checks that optimizer improved marginal likelihood
- assert gpc.log_marginal_likelihood(
- gpc.kernel_.theta
- ) >= gpc.log_marginal_likelihood(kernel.theta)
- @pytest.mark.parametrize("kernel", kernels)
- def test_multi_class(kernel):
- # Test GPC for multi-class classification problems.
- gpc = GaussianProcessClassifier(kernel=kernel)
- gpc.fit(X, y_mc)
- y_prob = gpc.predict_proba(X2)
- assert_almost_equal(y_prob.sum(1), 1)
- y_pred = gpc.predict(X2)
- assert_array_equal(np.argmax(y_prob, 1), y_pred)
- @pytest.mark.parametrize("kernel", kernels)
- def test_multi_class_n_jobs(kernel):
- # Test that multi-class GPC produces identical results with n_jobs>1.
- gpc = GaussianProcessClassifier(kernel=kernel)
- gpc.fit(X, y_mc)
- gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2)
- gpc_2.fit(X, y_mc)
- y_prob = gpc.predict_proba(X2)
- y_prob_2 = gpc_2.predict_proba(X2)
- assert_almost_equal(y_prob, y_prob_2)
- def test_warning_bounds():
- kernel = RBF(length_scale_bounds=[1e-5, 1e-3])
- gpc = GaussianProcessClassifier(kernel=kernel)
- warning_message = (
- "The optimal value found for dimension 0 of parameter "
- "length_scale is close to the specified upper bound "
- "0.001. Increasing the bound and calling fit again may "
- "find a better value."
- )
- with pytest.warns(ConvergenceWarning, match=warning_message):
- gpc.fit(X, y)
- kernel_sum = WhiteKernel(noise_level_bounds=[1e-5, 1e-3]) + RBF(
- length_scale_bounds=[1e3, 1e5]
- )
- gpc_sum = GaussianProcessClassifier(kernel=kernel_sum)
- with warnings.catch_warnings(record=True) as record:
- warnings.simplefilter("always")
- gpc_sum.fit(X, y)
- assert len(record) == 2
- assert issubclass(record[0].category, ConvergenceWarning)
- assert (
- record[0].message.args[0]
- == "The optimal value found for "
- "dimension 0 of parameter "
- "k1__noise_level is close to the "
- "specified upper bound 0.001. "
- "Increasing the bound and calling "
- "fit again may find a better value."
- )
- assert issubclass(record[1].category, ConvergenceWarning)
- assert (
- record[1].message.args[0]
- == "The optimal value found for "
- "dimension 0 of parameter "
- "k2__length_scale is close to the "
- "specified lower bound 1000.0. "
- "Decreasing the bound and calling "
- "fit again may find a better value."
- )
- X_tile = np.tile(X, 2)
- kernel_dims = RBF(length_scale=[1.0, 2.0], length_scale_bounds=[1e1, 1e2])
- gpc_dims = GaussianProcessClassifier(kernel=kernel_dims)
- with warnings.catch_warnings(record=True) as record:
- warnings.simplefilter("always")
- gpc_dims.fit(X_tile, y)
- assert len(record) == 2
- assert issubclass(record[0].category, ConvergenceWarning)
- assert (
- record[0].message.args[0]
- == "The optimal value found for "
- "dimension 0 of parameter "
- "length_scale is close to the "
- "specified upper bound 100.0. "
- "Increasing the bound and calling "
- "fit again may find a better value."
- )
- assert issubclass(record[1].category, ConvergenceWarning)
- assert (
- record[1].message.args[0]
- == "The optimal value found for "
- "dimension 1 of parameter "
- "length_scale is close to the "
- "specified upper bound 100.0. "
- "Increasing the bound and calling "
- "fit again may find a better value."
- )
- @pytest.mark.parametrize(
- "params, error_type, err_msg",
- [
- (
- {"kernel": CompoundKernel(0)},
- ValueError,
- "kernel cannot be a CompoundKernel",
- )
- ],
- )
- def test_gpc_fit_error(params, error_type, err_msg):
- """Check that expected error are raised during fit."""
- gpc = GaussianProcessClassifier(**params)
- with pytest.raises(error_type, match=err_msg):
- gpc.fit(X, y)
|