| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 |
- """Testing for kernels for Gaussian processes."""
- # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
- # License: BSD 3 clause
- from inspect import signature
- import numpy as np
- import pytest
- from sklearn.base import clone
- from sklearn.gaussian_process.kernels import (
- RBF,
- CompoundKernel,
- ConstantKernel,
- DotProduct,
- Exponentiation,
- ExpSineSquared,
- KernelOperator,
- Matern,
- PairwiseKernel,
- RationalQuadratic,
- WhiteKernel,
- _approx_fprime,
- )
- from sklearn.metrics.pairwise import (
- PAIRWISE_KERNEL_FUNCTIONS,
- euclidean_distances,
- pairwise_kernels,
- )
- from sklearn.utils._testing import (
- assert_allclose,
- assert_almost_equal,
- assert_array_almost_equal,
- assert_array_equal,
- )
- X = np.random.RandomState(0).normal(0, 1, (5, 2))
- Y = np.random.RandomState(0).normal(0, 1, (6, 2))
- kernel_rbf_plus_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0)
- kernels = [
- RBF(length_scale=2.0),
- RBF(length_scale_bounds=(0.5, 2.0)),
- ConstantKernel(constant_value=10.0),
- 2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"),
- 2.0 * RBF(length_scale=0.5),
- kernel_rbf_plus_white,
- 2.0 * RBF(length_scale=[0.5, 2.0]),
- 2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"),
- 2.0 * Matern(length_scale=0.5, nu=0.5),
- 2.0 * Matern(length_scale=1.5, nu=1.5),
- 2.0 * Matern(length_scale=2.5, nu=2.5),
- 2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5),
- 3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5),
- 4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5),
- RationalQuadratic(length_scale=0.5, alpha=1.5),
- ExpSineSquared(length_scale=0.5, periodicity=1.5),
- DotProduct(sigma_0=2.0),
- DotProduct(sigma_0=2.0) ** 2,
- RBF(length_scale=[2.0]),
- Matern(length_scale=[2.0]),
- ]
- for metric in PAIRWISE_KERNEL_FUNCTIONS:
- if metric in ["additive_chi2", "chi2"]:
- continue
- kernels.append(PairwiseKernel(gamma=1.0, metric=metric))
- @pytest.mark.parametrize("kernel", kernels)
- def test_kernel_gradient(kernel):
- # Compare analytic and numeric gradient of kernels.
- K, K_gradient = kernel(X, eval_gradient=True)
- assert K_gradient.shape[0] == X.shape[0]
- assert K_gradient.shape[1] == X.shape[0]
- assert K_gradient.shape[2] == kernel.theta.shape[0]
- def eval_kernel_for_theta(theta):
- kernel_clone = kernel.clone_with_theta(theta)
- K = kernel_clone(X, eval_gradient=False)
- return K
- K_gradient_approx = _approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10)
- assert_almost_equal(K_gradient, K_gradient_approx, 4)
- @pytest.mark.parametrize(
- "kernel",
- [
- kernel
- for kernel in kernels
- # skip non-basic kernels
- if not (isinstance(kernel, (KernelOperator, Exponentiation)))
- ],
- )
- def test_kernel_theta(kernel):
- # Check that parameter vector theta of kernel is set correctly.
- theta = kernel.theta
- _, K_gradient = kernel(X, eval_gradient=True)
- # Determine kernel parameters that contribute to theta
- init_sign = signature(kernel.__class__.__init__).parameters.values()
- args = [p.name for p in init_sign if p.name != "self"]
- theta_vars = map(
- lambda s: s[0 : -len("_bounds")], filter(lambda s: s.endswith("_bounds"), args)
- )
- assert set(hyperparameter.name for hyperparameter in kernel.hyperparameters) == set(
- theta_vars
- )
- # Check that values returned in theta are consistent with
- # hyperparameter values (being their logarithms)
- for i, hyperparameter in enumerate(kernel.hyperparameters):
- assert theta[i] == np.log(getattr(kernel, hyperparameter.name))
- # Fixed kernel parameters must be excluded from theta and gradient.
- for i, hyperparameter in enumerate(kernel.hyperparameters):
- # create copy with certain hyperparameter fixed
- params = kernel.get_params()
- params[hyperparameter.name + "_bounds"] = "fixed"
- kernel_class = kernel.__class__
- new_kernel = kernel_class(**params)
- # Check that theta and K_gradient are identical with the fixed
- # dimension left out
- _, K_gradient_new = new_kernel(X, eval_gradient=True)
- assert theta.shape[0] == new_kernel.theta.shape[0] + 1
- assert K_gradient.shape[2] == K_gradient_new.shape[2] + 1
- if i > 0:
- assert theta[:i] == new_kernel.theta[:i]
- assert_array_equal(K_gradient[..., :i], K_gradient_new[..., :i])
- if i + 1 < len(kernel.hyperparameters):
- assert theta[i + 1 :] == new_kernel.theta[i:]
- assert_array_equal(K_gradient[..., i + 1 :], K_gradient_new[..., i:])
- # Check that values of theta are modified correctly
- for i, hyperparameter in enumerate(kernel.hyperparameters):
- theta[i] = np.log(42)
- kernel.theta = theta
- assert_almost_equal(getattr(kernel, hyperparameter.name), 42)
- setattr(kernel, hyperparameter.name, 43)
- assert_almost_equal(kernel.theta[i], np.log(43))
- @pytest.mark.parametrize(
- "kernel",
- [
- kernel
- for kernel in kernels
- # Identity is not satisfied on diagonal
- if kernel != kernel_rbf_plus_white
- ],
- )
- def test_auto_vs_cross(kernel):
- # Auto-correlation and cross-correlation should be consistent.
- K_auto = kernel(X)
- K_cross = kernel(X, X)
- assert_almost_equal(K_auto, K_cross, 5)
- @pytest.mark.parametrize("kernel", kernels)
- def test_kernel_diag(kernel):
- # Test that diag method of kernel returns consistent results.
- K_call_diag = np.diag(kernel(X))
- K_diag = kernel.diag(X)
- assert_almost_equal(K_call_diag, K_diag, 5)
- def test_kernel_operator_commutative():
- # Adding kernels and multiplying kernels should be commutative.
- # Check addition
- assert_almost_equal((RBF(2.0) + 1.0)(X), (1.0 + RBF(2.0))(X))
- # Check multiplication
- assert_almost_equal((3.0 * RBF(2.0))(X), (RBF(2.0) * 3.0)(X))
- def test_kernel_anisotropic():
- # Anisotropic kernel should be consistent with isotropic kernels.
- kernel = 3.0 * RBF([0.5, 2.0])
- K = kernel(X)
- X1 = np.array(X)
- X1[:, 0] *= 4
- K1 = 3.0 * RBF(2.0)(X1)
- assert_almost_equal(K, K1)
- X2 = np.array(X)
- X2[:, 1] /= 4
- K2 = 3.0 * RBF(0.5)(X2)
- assert_almost_equal(K, K2)
- # Check getting and setting via theta
- kernel.theta = kernel.theta + np.log(2)
- assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0]))
- assert_array_equal(kernel.k2.length_scale, [1.0, 4.0])
- @pytest.mark.parametrize(
- "kernel", [kernel for kernel in kernels if kernel.is_stationary()]
- )
- def test_kernel_stationary(kernel):
- # Test stationarity of kernels.
- K = kernel(X, X + 1)
- assert_almost_equal(K[0, 0], np.diag(K))
- @pytest.mark.parametrize("kernel", kernels)
- def test_kernel_input_type(kernel):
- # Test whether kernels is for vectors or structured data
- if isinstance(kernel, Exponentiation):
- assert kernel.requires_vector_input == kernel.kernel.requires_vector_input
- if isinstance(kernel, KernelOperator):
- assert kernel.requires_vector_input == (
- kernel.k1.requires_vector_input or kernel.k2.requires_vector_input
- )
- def test_compound_kernel_input_type():
- kernel = CompoundKernel([WhiteKernel(noise_level=3.0)])
- assert not kernel.requires_vector_input
- kernel = CompoundKernel([WhiteKernel(noise_level=3.0), RBF(length_scale=2.0)])
- assert kernel.requires_vector_input
- def check_hyperparameters_equal(kernel1, kernel2):
- # Check that hyperparameters of two kernels are equal
- for attr in set(dir(kernel1) + dir(kernel2)):
- if attr.startswith("hyperparameter_"):
- attr_value1 = getattr(kernel1, attr)
- attr_value2 = getattr(kernel2, attr)
- assert attr_value1 == attr_value2
- @pytest.mark.parametrize("kernel", kernels)
- def test_kernel_clone(kernel):
- # Test that sklearn's clone works correctly on kernels.
- kernel_cloned = clone(kernel)
- # XXX: Should this be fixed?
- # This differs from the sklearn's estimators equality check.
- assert kernel == kernel_cloned
- assert id(kernel) != id(kernel_cloned)
- # Check that all constructor parameters are equal.
- assert kernel.get_params() == kernel_cloned.get_params()
- # Check that all hyperparameters are equal.
- check_hyperparameters_equal(kernel, kernel_cloned)
- @pytest.mark.parametrize("kernel", kernels)
- def test_kernel_clone_after_set_params(kernel):
- # This test is to verify that using set_params does not
- # break clone on kernels.
- # This used to break because in kernels such as the RBF, non-trivial
- # logic that modified the length scale used to be in the constructor
- # See https://github.com/scikit-learn/scikit-learn/issues/6961
- # for more details.
- bounds = (1e-5, 1e5)
- kernel_cloned = clone(kernel)
- params = kernel.get_params()
- # RationalQuadratic kernel is isotropic.
- isotropic_kernels = (ExpSineSquared, RationalQuadratic)
- if "length_scale" in params and not isinstance(kernel, isotropic_kernels):
- length_scale = params["length_scale"]
- if np.iterable(length_scale):
- # XXX unreached code as of v0.22
- params["length_scale"] = length_scale[0]
- params["length_scale_bounds"] = bounds
- else:
- params["length_scale"] = [length_scale] * 2
- params["length_scale_bounds"] = bounds * 2
- kernel_cloned.set_params(**params)
- kernel_cloned_clone = clone(kernel_cloned)
- assert kernel_cloned_clone.get_params() == kernel_cloned.get_params()
- assert id(kernel_cloned_clone) != id(kernel_cloned)
- check_hyperparameters_equal(kernel_cloned, kernel_cloned_clone)
- def test_matern_kernel():
- # Test consistency of Matern kernel for special values of nu.
- K = Matern(nu=1.5, length_scale=1.0)(X)
- # the diagonal elements of a matern kernel are 1
- assert_array_almost_equal(np.diag(K), np.ones(X.shape[0]))
- # matern kernel for coef0==0.5 is equal to absolute exponential kernel
- K_absexp = np.exp(-euclidean_distances(X, X, squared=False))
- K = Matern(nu=0.5, length_scale=1.0)(X)
- assert_array_almost_equal(K, K_absexp)
- # matern kernel with coef0==inf is equal to RBF kernel
- K_rbf = RBF(length_scale=1.0)(X)
- K = Matern(nu=np.inf, length_scale=1.0)(X)
- assert_array_almost_equal(K, K_rbf)
- assert_allclose(K, K_rbf)
- # test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5])
- # result in nearly identical results as the general case for coef0 in
- # [0.5 + tiny, 1.5 + tiny, 2.5 + tiny]
- tiny = 1e-10
- for nu in [0.5, 1.5, 2.5]:
- K1 = Matern(nu=nu, length_scale=1.0)(X)
- K2 = Matern(nu=nu + tiny, length_scale=1.0)(X)
- assert_array_almost_equal(K1, K2)
- # test that coef0==large is close to RBF
- large = 100
- K1 = Matern(nu=large, length_scale=1.0)(X)
- K2 = RBF(length_scale=1.0)(X)
- assert_array_almost_equal(K1, K2, decimal=2)
- @pytest.mark.parametrize("kernel", kernels)
- def test_kernel_versus_pairwise(kernel):
- # Check that GP kernels can also be used as pairwise kernels.
- # Test auto-kernel
- if kernel != kernel_rbf_plus_white:
- # For WhiteKernel: k(X) != k(X,X). This is assumed by
- # pairwise_kernels
- K1 = kernel(X)
- K2 = pairwise_kernels(X, metric=kernel)
- assert_array_almost_equal(K1, K2)
- # Test cross-kernel
- K1 = kernel(X, Y)
- K2 = pairwise_kernels(X, Y, metric=kernel)
- assert_array_almost_equal(K1, K2)
- @pytest.mark.parametrize("kernel", kernels)
- def test_set_get_params(kernel):
- # Check that set_params()/get_params() is consistent with kernel.theta.
- # Test get_params()
- index = 0
- params = kernel.get_params()
- for hyperparameter in kernel.hyperparameters:
- if isinstance("string", type(hyperparameter.bounds)):
- if hyperparameter.bounds == "fixed":
- continue
- size = hyperparameter.n_elements
- if size > 1: # anisotropic kernels
- assert_almost_equal(
- np.exp(kernel.theta[index : index + size]), params[hyperparameter.name]
- )
- index += size
- else:
- assert_almost_equal(
- np.exp(kernel.theta[index]), params[hyperparameter.name]
- )
- index += 1
- # Test set_params()
- index = 0
- value = 10 # arbitrary value
- for hyperparameter in kernel.hyperparameters:
- if isinstance("string", type(hyperparameter.bounds)):
- if hyperparameter.bounds == "fixed":
- continue
- size = hyperparameter.n_elements
- if size > 1: # anisotropic kernels
- kernel.set_params(**{hyperparameter.name: [value] * size})
- assert_almost_equal(
- np.exp(kernel.theta[index : index + size]), [value] * size
- )
- index += size
- else:
- kernel.set_params(**{hyperparameter.name: value})
- assert_almost_equal(np.exp(kernel.theta[index]), value)
- index += 1
- @pytest.mark.parametrize("kernel", kernels)
- def test_repr_kernels(kernel):
- # Smoke-test for repr in kernels.
- repr(kernel)
- def test_rational_quadratic_kernel():
- kernel = RationalQuadratic(length_scale=[1.0, 1.0])
- message = (
- "RationalQuadratic kernel only supports isotropic "
- "version, please use a single "
- "scalar for length_scale"
- )
- with pytest.raises(AttributeError, match=message):
- kernel(X)
|