| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- # Author: Mathieu Blondel
- # License: BSD 3 clause
- from numbers import Real
- from ..utils._param_validation import Interval, StrOptions
- from ._stochastic_gradient import BaseSGDClassifier
- class Perceptron(BaseSGDClassifier):
- """Linear perceptron classifier.
- Read more in the :ref:`User Guide <perceptron>`.
- Parameters
- ----------
- penalty : {'l2','l1','elasticnet'}, default=None
- The penalty (aka regularization term) to be used.
- alpha : float, default=0.0001
- Constant that multiplies the regularization term if regularization is
- used.
- l1_ratio : float, default=0.15
- The Elastic Net mixing parameter, with `0 <= l1_ratio <= 1`.
- `l1_ratio=0` corresponds to L2 penalty, `l1_ratio=1` to L1.
- Only used if `penalty='elasticnet'`.
- .. versionadded:: 0.24
- fit_intercept : bool, default=True
- Whether the intercept should be estimated or not. If False, the
- data is assumed to be already centered.
- max_iter : int, default=1000
- The maximum number of passes over the training data (aka epochs).
- It only impacts the behavior in the ``fit`` method, and not the
- :meth:`partial_fit` method.
- .. versionadded:: 0.19
- tol : float or None, default=1e-3
- The stopping criterion. If it is not None, the iterations will stop
- when (loss > previous_loss - tol).
- .. versionadded:: 0.19
- shuffle : bool, default=True
- Whether or not the training data should be shuffled after each epoch.
- verbose : int, default=0
- The verbosity level.
- eta0 : float, default=1
- Constant by which the updates are multiplied.
- n_jobs : int, default=None
- The number of CPUs to use to do the OVA (One Versus All, for
- multi-class problems) computation.
- ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
- ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
- for more details.
- random_state : int, RandomState instance or None, default=0
- Used to shuffle the training data, when ``shuffle`` is set to
- ``True``. Pass an int for reproducible output across multiple
- function calls.
- See :term:`Glossary <random_state>`.
- early_stopping : bool, default=False
- Whether to use early stopping to terminate training when validation.
- score is not improving. If set to True, it will automatically set aside
- a stratified fraction of training data as validation and terminate
- training when validation score is not improving by at least tol for
- n_iter_no_change consecutive epochs.
- .. versionadded:: 0.20
- validation_fraction : float, default=0.1
- The proportion of training data to set aside as validation set for
- early stopping. Must be between 0 and 1.
- Only used if early_stopping is True.
- .. versionadded:: 0.20
- n_iter_no_change : int, default=5
- Number of iterations with no improvement to wait before early stopping.
- .. versionadded:: 0.20
- class_weight : dict, {class_label: weight} or "balanced", default=None
- Preset for the class_weight fit parameter.
- Weights associated with classes. If not given, all classes
- are supposed to have weight one.
- The "balanced" mode uses the values of y to automatically adjust
- weights inversely proportional to class frequencies in the input data
- as ``n_samples / (n_classes * np.bincount(y))``.
- warm_start : bool, default=False
- When set to True, reuse the solution of the previous call to fit as
- initialization, otherwise, just erase the previous solution. See
- :term:`the Glossary <warm_start>`.
- Attributes
- ----------
- classes_ : ndarray of shape (n_classes,)
- The unique classes labels.
- coef_ : ndarray of shape (1, n_features) if n_classes == 2 else \
- (n_classes, n_features)
- Weights assigned to the features.
- intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,)
- Constants in decision function.
- loss_function_ : concrete LossFunction
- The function that determines the loss, or difference between the
- output of the algorithm and the target values.
- n_features_in_ : int
- Number of features seen during :term:`fit`.
- .. versionadded:: 0.24
- feature_names_in_ : ndarray of shape (`n_features_in_`,)
- Names of features seen during :term:`fit`. Defined only when `X`
- has feature names that are all strings.
- .. versionadded:: 1.0
- n_iter_ : int
- The actual number of iterations to reach the stopping criterion.
- For multiclass fits, it is the maximum over every binary fit.
- t_ : int
- Number of weight updates performed during training.
- Same as ``(n_iter_ * n_samples + 1)``.
- See Also
- --------
- sklearn.linear_model.SGDClassifier : Linear classifiers
- (SVM, logistic regression, etc.) with SGD training.
- Notes
- -----
- ``Perceptron`` is a classification algorithm which shares the same
- underlying implementation with ``SGDClassifier``. In fact,
- ``Perceptron()`` is equivalent to `SGDClassifier(loss="perceptron",
- eta0=1, learning_rate="constant", penalty=None)`.
- References
- ----------
- https://en.wikipedia.org/wiki/Perceptron and references therein.
- Examples
- --------
- >>> from sklearn.datasets import load_digits
- >>> from sklearn.linear_model import Perceptron
- >>> X, y = load_digits(return_X_y=True)
- >>> clf = Perceptron(tol=1e-3, random_state=0)
- >>> clf.fit(X, y)
- Perceptron()
- >>> clf.score(X, y)
- 0.939...
- """
- _parameter_constraints: dict = {**BaseSGDClassifier._parameter_constraints}
- _parameter_constraints.pop("loss")
- _parameter_constraints.pop("average")
- _parameter_constraints.update(
- {
- "penalty": [StrOptions({"l2", "l1", "elasticnet"}), None],
- "alpha": [Interval(Real, 0, None, closed="left")],
- "l1_ratio": [Interval(Real, 0, 1, closed="both")],
- "eta0": [Interval(Real, 0, None, closed="left")],
- }
- )
- def __init__(
- self,
- *,
- penalty=None,
- alpha=0.0001,
- l1_ratio=0.15,
- fit_intercept=True,
- max_iter=1000,
- tol=1e-3,
- shuffle=True,
- verbose=0,
- eta0=1.0,
- n_jobs=None,
- random_state=0,
- early_stopping=False,
- validation_fraction=0.1,
- n_iter_no_change=5,
- class_weight=None,
- warm_start=False,
- ):
- super().__init__(
- loss="perceptron",
- penalty=penalty,
- alpha=alpha,
- l1_ratio=l1_ratio,
- fit_intercept=fit_intercept,
- max_iter=max_iter,
- tol=tol,
- shuffle=shuffle,
- verbose=verbose,
- random_state=random_state,
- learning_rate="constant",
- eta0=eta0,
- early_stopping=early_stopping,
- validation_fraction=validation_fraction,
- n_iter_no_change=n_iter_no_change,
- power_t=0.5,
- warm_start=warm_start,
- class_weight=class_weight,
- n_jobs=n_jobs,
- )
|