| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
- # Fabian Pedregosa <fabian.pedregosa@inria.fr>
- #
- # License: BSD 3 clause
- from math import log
- import numpy as np
- import pytest
- from sklearn import datasets
- from sklearn.linear_model import ARDRegression, BayesianRidge, Ridge
- from sklearn.utils import check_random_state
- from sklearn.utils._testing import (
- assert_almost_equal,
- assert_array_almost_equal,
- assert_array_less,
- )
- from sklearn.utils.extmath import fast_logdet
- diabetes = datasets.load_diabetes()
- def test_bayesian_ridge_scores():
- """Check scores attribute shape"""
- X, y = diabetes.data, diabetes.target
- clf = BayesianRidge(compute_score=True)
- clf.fit(X, y)
- assert clf.scores_.shape == (clf.n_iter_ + 1,)
- def test_bayesian_ridge_score_values():
- """Check value of score on toy example.
- Compute log marginal likelihood with equation (36) in Sparse Bayesian
- Learning and the Relevance Vector Machine (Tipping, 2001):
- - 0.5 * (log |Id/alpha + X.X^T/lambda| +
- y^T.(Id/alpha + X.X^T/lambda).y + n * log(2 * pi))
- + lambda_1 * log(lambda) - lambda_2 * lambda
- + alpha_1 * log(alpha) - alpha_2 * alpha
- and check equality with the score computed during training.
- """
- X, y = diabetes.data, diabetes.target
- n_samples = X.shape[0]
- # check with initial values of alpha and lambda (see code for the values)
- eps = np.finfo(np.float64).eps
- alpha_ = 1.0 / (np.var(y) + eps)
- lambda_ = 1.0
- # value of the parameters of the Gamma hyperpriors
- alpha_1 = 0.1
- alpha_2 = 0.1
- lambda_1 = 0.1
- lambda_2 = 0.1
- # compute score using formula of docstring
- score = lambda_1 * log(lambda_) - lambda_2 * lambda_
- score += alpha_1 * log(alpha_) - alpha_2 * alpha_
- M = 1.0 / alpha_ * np.eye(n_samples) + 1.0 / lambda_ * np.dot(X, X.T)
- M_inv_dot_y = np.linalg.solve(M, y)
- score += -0.5 * (
- fast_logdet(M) + np.dot(y.T, M_inv_dot_y) + n_samples * log(2 * np.pi)
- )
- # compute score with BayesianRidge
- clf = BayesianRidge(
- alpha_1=alpha_1,
- alpha_2=alpha_2,
- lambda_1=lambda_1,
- lambda_2=lambda_2,
- max_iter=1,
- fit_intercept=False,
- compute_score=True,
- )
- clf.fit(X, y)
- assert_almost_equal(clf.scores_[0], score, decimal=9)
- def test_bayesian_ridge_parameter():
- # Test correctness of lambda_ and alpha_ parameters (GitHub issue #8224)
- X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
- y = np.array([1, 2, 3, 2, 0, 4, 5]).T
- # A Ridge regression model using an alpha value equal to the ratio of
- # lambda_ and alpha_ from the Bayesian Ridge model must be identical
- br_model = BayesianRidge(compute_score=True).fit(X, y)
- rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(X, y)
- assert_array_almost_equal(rr_model.coef_, br_model.coef_)
- assert_almost_equal(rr_model.intercept_, br_model.intercept_)
- def test_bayesian_sample_weights():
- # Test correctness of the sample_weights method
- X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
- y = np.array([1, 2, 3, 2, 0, 4, 5]).T
- w = np.array([4, 3, 3, 1, 1, 2, 3]).T
- # A Ridge regression model using an alpha value equal to the ratio of
- # lambda_ and alpha_ from the Bayesian Ridge model must be identical
- br_model = BayesianRidge(compute_score=True).fit(X, y, sample_weight=w)
- rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(
- X, y, sample_weight=w
- )
- assert_array_almost_equal(rr_model.coef_, br_model.coef_)
- assert_almost_equal(rr_model.intercept_, br_model.intercept_)
- def test_toy_bayesian_ridge_object():
- # Test BayesianRidge on toy
- X = np.array([[1], [2], [6], [8], [10]])
- Y = np.array([1, 2, 6, 8, 10])
- clf = BayesianRidge(compute_score=True)
- clf.fit(X, Y)
- # Check that the model could approximately learn the identity function
- test = [[1], [3], [4]]
- assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
- def test_bayesian_initial_params():
- # Test BayesianRidge with initial values (alpha_init, lambda_init)
- X = np.vander(np.linspace(0, 4, 5), 4)
- y = np.array([0.0, 1.0, 0.0, -1.0, 0.0]) # y = (x^3 - 6x^2 + 8x) / 3
- # In this case, starting from the default initial values will increase
- # the bias of the fitted curve. So, lambda_init should be small.
- reg = BayesianRidge(alpha_init=1.0, lambda_init=1e-3)
- # Check the R2 score nearly equals to one.
- r2 = reg.fit(X, y).score(X, y)
- assert_almost_equal(r2, 1.0)
- def test_prediction_bayesian_ridge_ard_with_constant_input():
- # Test BayesianRidge and ARDRegression predictions for edge case of
- # constant target vectors
- n_samples = 4
- n_features = 5
- random_state = check_random_state(42)
- constant_value = random_state.rand()
- X = random_state.random_sample((n_samples, n_features))
- y = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
- expected = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
- for clf in [BayesianRidge(), ARDRegression()]:
- y_pred = clf.fit(X, y).predict(X)
- assert_array_almost_equal(y_pred, expected)
- def test_std_bayesian_ridge_ard_with_constant_input():
- # Test BayesianRidge and ARDRegression standard dev. for edge case of
- # constant target vector
- # The standard dev. should be relatively small (< 0.01 is tested here)
- n_samples = 10
- n_features = 5
- random_state = check_random_state(42)
- constant_value = random_state.rand()
- X = random_state.random_sample((n_samples, n_features))
- y = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
- expected_upper_boundary = 0.01
- for clf in [BayesianRidge(), ARDRegression()]:
- _, y_std = clf.fit(X, y).predict(X, return_std=True)
- assert_array_less(y_std, expected_upper_boundary)
- def test_update_of_sigma_in_ard():
- # Checks that `sigma_` is updated correctly after the last iteration
- # of the ARDRegression algorithm. See issue #10128.
- X = np.array([[1, 0], [0, 0]])
- y = np.array([0, 0])
- clf = ARDRegression(max_iter=1)
- clf.fit(X, y)
- # With the inputs above, ARDRegression prunes both of the two coefficients
- # in the first iteration. Hence, the expected shape of `sigma_` is (0, 0).
- assert clf.sigma_.shape == (0, 0)
- # Ensure that no error is thrown at prediction stage
- clf.predict(X, return_std=True)
- def test_toy_ard_object():
- # Test BayesianRegression ARD classifier
- X = np.array([[1], [2], [3]])
- Y = np.array([1, 2, 3])
- clf = ARDRegression(compute_score=True)
- clf.fit(X, Y)
- # Check that the model could approximately learn the identity function
- test = [[1], [3], [4]]
- assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
- @pytest.mark.parametrize("n_samples, n_features", ((10, 100), (100, 10)))
- def test_ard_accuracy_on_easy_problem(global_random_seed, n_samples, n_features):
- # Check that ARD converges with reasonable accuracy on an easy problem
- # (Github issue #14055)
- X = np.random.RandomState(global_random_seed).normal(size=(250, 3))
- y = X[:, 1]
- regressor = ARDRegression()
- regressor.fit(X, y)
- abs_coef_error = np.abs(1 - regressor.coef_[1])
- assert abs_coef_error < 1e-10
- def test_return_std():
- # Test return_std option for both Bayesian regressors
- def f(X):
- return np.dot(X, w) + b
- def f_noise(X, noise_mult):
- return f(X) + np.random.randn(X.shape[0]) * noise_mult
- d = 5
- n_train = 50
- n_test = 10
- w = np.array([1.0, 0.0, 1.0, -1.0, 0.0])
- b = 1.0
- X = np.random.random((n_train, d))
- X_test = np.random.random((n_test, d))
- for decimal, noise_mult in enumerate([1, 0.1, 0.01]):
- y = f_noise(X, noise_mult)
- m1 = BayesianRidge()
- m1.fit(X, y)
- y_mean1, y_std1 = m1.predict(X_test, return_std=True)
- assert_array_almost_equal(y_std1, noise_mult, decimal=decimal)
- m2 = ARDRegression()
- m2.fit(X, y)
- y_mean2, y_std2 = m2.predict(X_test, return_std=True)
- assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
- def test_update_sigma(global_random_seed):
- # make sure the two update_sigma() helpers are equivalent. The woodbury
- # formula is used when n_samples < n_features, and the other one is used
- # otherwise.
- rng = np.random.RandomState(global_random_seed)
- # set n_samples == n_features to avoid instability issues when inverting
- # the matrices. Using the woodbury formula would be unstable when
- # n_samples > n_features
- n_samples = n_features = 10
- X = rng.randn(n_samples, n_features)
- alpha = 1
- lmbda = np.arange(1, n_features + 1)
- keep_lambda = np.array([True] * n_features)
- reg = ARDRegression()
- sigma = reg._update_sigma(X, alpha, lmbda, keep_lambda)
- sigma_woodbury = reg._update_sigma_woodbury(X, alpha, lmbda, keep_lambda)
- np.testing.assert_allclose(sigma, sigma_woodbury)
- @pytest.mark.parametrize("dtype", [np.float32, np.float64])
- @pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
- def test_dtype_match(dtype, Estimator):
- # Test that np.float32 input data is not cast to np.float64 when possible
- X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]], dtype=dtype)
- y = np.array([1, 2, 3, 2, 0, 4, 5]).T
- model = Estimator()
- # check type consistency
- model.fit(X, y)
- attributes = ["coef_", "sigma_"]
- for attribute in attributes:
- assert getattr(model, attribute).dtype == X.dtype
- y_mean, y_std = model.predict(X, return_std=True)
- assert y_mean.dtype == X.dtype
- assert y_std.dtype == X.dtype
- @pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
- def test_dtype_correctness(Estimator):
- X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
- y = np.array([1, 2, 3, 2, 0, 4, 5]).T
- model = Estimator()
- coef_32 = model.fit(X.astype(np.float32), y).coef_
- coef_64 = model.fit(X.astype(np.float64), y).coef_
- np.testing.assert_allclose(coef_32, coef_64, rtol=1e-4)
- # TODO(1.5) remove
- @pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
- def test_bayesian_ridge_ard_n_iter_deprecated(Estimator):
- """Check the deprecation warning of `n_iter`."""
- depr_msg = (
- "'n_iter' was renamed to 'max_iter' in version 1.3 and will be removed in 1.5"
- )
- X, y = diabetes.data, diabetes.target
- model = Estimator(n_iter=5)
- with pytest.warns(FutureWarning, match=depr_msg):
- model.fit(X, y)
- # TODO(1.5) remove
- @pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
- def test_bayesian_ridge_ard_max_iter_and_n_iter_both_set(Estimator):
- """Check that a ValueError is raised when both `max_iter` and `n_iter` are set."""
- err_msg = (
- "Both `n_iter` and `max_iter` attributes were set. Attribute"
- " `n_iter` was deprecated in version 1.3 and will be removed in"
- " 1.5. To avoid this error, only set the `max_iter` attribute."
- )
- X, y = diabetes.data, diabetes.target
- model = Estimator(n_iter=5, max_iter=5)
- with pytest.raises(ValueError, match=err_msg):
- model.fit(X, y)
|