| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091 |
- import itertools
- import os
- import warnings
- from functools import partial
- import numpy as np
- import pytest
- from numpy.testing import (
- assert_allclose,
- assert_almost_equal,
- assert_array_almost_equal,
- assert_array_equal,
- )
- from scipy import sparse
- from sklearn.base import clone
- from sklearn.datasets import load_iris, make_classification
- from sklearn.exceptions import ConvergenceWarning
- from sklearn.linear_model import SGDClassifier
- from sklearn.linear_model._logistic import (
- LogisticRegression as LogisticRegressionDefault,
- )
- from sklearn.linear_model._logistic import (
- LogisticRegressionCV as LogisticRegressionCVDefault,
- )
- from sklearn.linear_model._logistic import (
- _log_reg_scoring_path,
- _logistic_regression_path,
- )
- from sklearn.metrics import get_scorer, log_loss
- from sklearn.model_selection import (
- GridSearchCV,
- StratifiedKFold,
- cross_val_score,
- train_test_split,
- )
- from sklearn.preprocessing import LabelEncoder, StandardScaler, scale
- from sklearn.svm import l1_min_c
- from sklearn.utils import _IS_32BIT, compute_class_weight, shuffle
- from sklearn.utils._testing import ignore_warnings, skip_if_no_parallel
- pytestmark = pytest.mark.filterwarnings(
- "error::sklearn.exceptions.ConvergenceWarning:sklearn.*"
- )
- # Fixing random_state helps prevent ConvergenceWarnings
- LogisticRegression = partial(LogisticRegressionDefault, random_state=0)
- LogisticRegressionCV = partial(LogisticRegressionCVDefault, random_state=0)
- SOLVERS = ("lbfgs", "liblinear", "newton-cg", "newton-cholesky", "sag", "saga")
- X = [[-1, 0], [0, 1], [1, 1]]
- X_sp = sparse.csr_matrix(X)
- Y1 = [0, 1, 1]
- Y2 = [2, 1, 0]
- iris = load_iris()
- def check_predictions(clf, X, y):
- """Check that the model is able to fit the classification data"""
- n_samples = len(y)
- classes = np.unique(y)
- n_classes = classes.shape[0]
- predicted = clf.fit(X, y).predict(X)
- assert_array_equal(clf.classes_, classes)
- assert predicted.shape == (n_samples,)
- assert_array_equal(predicted, y)
- probabilities = clf.predict_proba(X)
- assert probabilities.shape == (n_samples, n_classes)
- assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples))
- assert_array_equal(probabilities.argmax(axis=1), y)
- def test_predict_2_classes():
- # Simple sanity check on a 2 classes dataset
- # Make sure it predicts the correct result on simple datasets.
- check_predictions(LogisticRegression(random_state=0), X, Y1)
- check_predictions(LogisticRegression(random_state=0), X_sp, Y1)
- check_predictions(LogisticRegression(C=100, random_state=0), X, Y1)
- check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1)
- check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1)
- check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1)
- def test_logistic_cv_mock_scorer():
- class MockScorer:
- def __init__(self):
- self.calls = 0
- self.scores = [0.1, 0.4, 0.8, 0.5]
- def __call__(self, model, X, y, sample_weight=None):
- score = self.scores[self.calls % len(self.scores)]
- self.calls += 1
- return score
- mock_scorer = MockScorer()
- Cs = [1, 2, 3, 4]
- cv = 2
- lr = LogisticRegressionCV(Cs=Cs, scoring=mock_scorer, cv=cv)
- X, y = make_classification(random_state=0)
- lr.fit(X, y)
- # Cs[2] has the highest score (0.8) from MockScorer
- assert lr.C_[0] == Cs[2]
- # scorer called 8 times (cv*len(Cs))
- assert mock_scorer.calls == cv * len(Cs)
- # reset mock_scorer
- mock_scorer.calls = 0
- custom_score = lr.score(X, lr.predict(X))
- assert custom_score == mock_scorer.scores[0]
- assert mock_scorer.calls == 1
- @skip_if_no_parallel
- def test_lr_liblinear_warning():
- n_samples, n_features = iris.data.shape
- target = iris.target_names[iris.target]
- lr = LogisticRegression(solver="liblinear", n_jobs=2)
- warning_message = (
- "'n_jobs' > 1 does not have any effect when"
- " 'solver' is set to 'liblinear'. Got 'n_jobs'"
- " = 2."
- )
- with pytest.warns(UserWarning, match=warning_message):
- lr.fit(iris.data, target)
- def test_predict_3_classes():
- check_predictions(LogisticRegression(C=10), X, Y2)
- check_predictions(LogisticRegression(C=10), X_sp, Y2)
- @pytest.mark.parametrize(
- "clf",
- [
- LogisticRegression(C=len(iris.data), solver="liblinear", multi_class="ovr"),
- LogisticRegression(C=len(iris.data), solver="lbfgs", multi_class="multinomial"),
- LogisticRegression(
- C=len(iris.data), solver="newton-cg", multi_class="multinomial"
- ),
- LogisticRegression(
- C=len(iris.data), solver="sag", tol=1e-2, multi_class="ovr", random_state=42
- ),
- LogisticRegression(
- C=len(iris.data),
- solver="saga",
- tol=1e-2,
- multi_class="ovr",
- random_state=42,
- ),
- LogisticRegression(
- C=len(iris.data), solver="newton-cholesky", multi_class="ovr"
- ),
- ],
- )
- def test_predict_iris(clf):
- """Test logistic regression with the iris dataset.
- Test that both multinomial and OvR solvers handle multiclass data correctly and
- give good accuracy score (>0.95) for the training data.
- """
- n_samples, n_features = iris.data.shape
- target = iris.target_names[iris.target]
- if clf.solver == "lbfgs":
- # lbfgs has convergence issues on the iris data with its default max_iter=100
- with warnings.catch_warnings():
- warnings.simplefilter("ignore", ConvergenceWarning)
- clf.fit(iris.data, target)
- else:
- clf.fit(iris.data, target)
- assert_array_equal(np.unique(target), clf.classes_)
- pred = clf.predict(iris.data)
- assert np.mean(pred == target) > 0.95
- probabilities = clf.predict_proba(iris.data)
- assert_allclose(probabilities.sum(axis=1), np.ones(n_samples))
- pred = iris.target_names[probabilities.argmax(axis=1)]
- assert np.mean(pred == target) > 0.95
- @pytest.mark.parametrize("LR", [LogisticRegression, LogisticRegressionCV])
- def test_check_solver_option(LR):
- X, y = iris.data, iris.target
- # only 'liblinear' and 'newton-cholesky' solver
- for solver in ["liblinear", "newton-cholesky"]:
- msg = f"Solver {solver} does not support a multinomial backend."
- lr = LR(solver=solver, multi_class="multinomial")
- with pytest.raises(ValueError, match=msg):
- lr.fit(X, y)
- # all solvers except 'liblinear' and 'saga'
- for solver in ["lbfgs", "newton-cg", "newton-cholesky", "sag"]:
- msg = "Solver %s supports only 'l2' or 'none' penalties," % solver
- lr = LR(solver=solver, penalty="l1", multi_class="ovr")
- with pytest.raises(ValueError, match=msg):
- lr.fit(X, y)
- for solver in ["lbfgs", "newton-cg", "newton-cholesky", "sag", "saga"]:
- msg = "Solver %s supports only dual=False, got dual=True" % solver
- lr = LR(solver=solver, dual=True, multi_class="ovr")
- with pytest.raises(ValueError, match=msg):
- lr.fit(X, y)
- # only saga supports elasticnet. We only test for liblinear because the
- # error is raised before for the other solvers (solver %s supports only l2
- # penalties)
- for solver in ["liblinear"]:
- msg = "Only 'saga' solver supports elasticnet penalty, got solver={}.".format(
- solver
- )
- lr = LR(solver=solver, penalty="elasticnet")
- with pytest.raises(ValueError, match=msg):
- lr.fit(X, y)
- # liblinear does not support penalty='none'
- # (LogisticRegressionCV does not supports penalty='none' at all)
- if LR is LogisticRegression:
- msg = "penalty='none' is not supported for the liblinear solver"
- lr = LR(penalty="none", solver="liblinear")
- with pytest.raises(ValueError, match=msg):
- lr.fit(X, y)
- @pytest.mark.parametrize("LR", [LogisticRegression, LogisticRegressionCV])
- def test_elasticnet_l1_ratio_err_helpful(LR):
- # Check that an informative error message is raised when penalty="elasticnet"
- # but l1_ratio is not specified.
- model = LR(penalty="elasticnet", solver="saga")
- with pytest.raises(ValueError, match=r".*l1_ratio.*"):
- model.fit(np.array([[1, 2], [3, 4]]), np.array([0, 1]))
- @pytest.mark.parametrize("solver", ["lbfgs", "newton-cg", "sag", "saga"])
- def test_multinomial_binary(solver):
- # Test multinomial LR on a binary problem.
- target = (iris.target > 0).astype(np.intp)
- target = np.array(["setosa", "not-setosa"])[target]
- clf = LogisticRegression(
- solver=solver, multi_class="multinomial", random_state=42, max_iter=2000
- )
- clf.fit(iris.data, target)
- assert clf.coef_.shape == (1, iris.data.shape[1])
- assert clf.intercept_.shape == (1,)
- assert_array_equal(clf.predict(iris.data), target)
- mlr = LogisticRegression(
- solver=solver, multi_class="multinomial", random_state=42, fit_intercept=False
- )
- mlr.fit(iris.data, target)
- pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)]
- assert np.mean(pred == target) > 0.9
- def test_multinomial_binary_probabilities(global_random_seed):
- # Test multinomial LR gives expected probabilities based on the
- # decision function, for a binary problem.
- X, y = make_classification(random_state=global_random_seed)
- clf = LogisticRegression(
- multi_class="multinomial",
- solver="saga",
- tol=1e-3,
- random_state=global_random_seed,
- )
- clf.fit(X, y)
- decision = clf.decision_function(X)
- proba = clf.predict_proba(X)
- expected_proba_class_1 = np.exp(decision) / (np.exp(decision) + np.exp(-decision))
- expected_proba = np.c_[1 - expected_proba_class_1, expected_proba_class_1]
- assert_almost_equal(proba, expected_proba)
- def test_sparsify():
- # Test sparsify and densify members.
- n_samples, n_features = iris.data.shape
- target = iris.target_names[iris.target]
- X = scale(iris.data)
- clf = LogisticRegression(random_state=0).fit(X, target)
- pred_d_d = clf.decision_function(X)
- clf.sparsify()
- assert sparse.issparse(clf.coef_)
- pred_s_d = clf.decision_function(X)
- sp_data = sparse.coo_matrix(X)
- pred_s_s = clf.decision_function(sp_data)
- clf.densify()
- pred_d_s = clf.decision_function(sp_data)
- assert_array_almost_equal(pred_d_d, pred_s_d)
- assert_array_almost_equal(pred_d_d, pred_s_s)
- assert_array_almost_equal(pred_d_d, pred_d_s)
- def test_inconsistent_input():
- # Test that an exception is raised on inconsistent input
- rng = np.random.RandomState(0)
- X_ = rng.random_sample((5, 10))
- y_ = np.ones(X_.shape[0])
- y_[0] = 0
- clf = LogisticRegression(random_state=0)
- # Wrong dimensions for training data
- y_wrong = y_[:-1]
- with pytest.raises(ValueError):
- clf.fit(X, y_wrong)
- # Wrong dimensions for test data
- with pytest.raises(ValueError):
- clf.fit(X_, y_).predict(rng.random_sample((3, 12)))
- def test_write_parameters():
- # Test that we can write to coef_ and intercept_
- clf = LogisticRegression(random_state=0)
- clf.fit(X, Y1)
- clf.coef_[:] = 0
- clf.intercept_[:] = 0
- assert_array_almost_equal(clf.decision_function(X), 0)
- def test_nan():
- # Test proper NaN handling.
- # Regression test for Issue #252: fit used to go into an infinite loop.
- Xnan = np.array(X, dtype=np.float64)
- Xnan[0, 1] = np.nan
- logistic = LogisticRegression(random_state=0)
- with pytest.raises(ValueError):
- logistic.fit(Xnan, Y1)
- def test_consistency_path():
- # Test that the path algorithm is consistent
- rng = np.random.RandomState(0)
- X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2)))
- y = [1] * 100 + [-1] * 100
- Cs = np.logspace(0, 4, 10)
- f = ignore_warnings
- # can't test with fit_intercept=True since LIBLINEAR
- # penalizes the intercept
- for solver in ["sag", "saga"]:
- coefs, Cs, _ = f(_logistic_regression_path)(
- X,
- y,
- Cs=Cs,
- fit_intercept=False,
- tol=1e-5,
- solver=solver,
- max_iter=1000,
- multi_class="ovr",
- random_state=0,
- )
- for i, C in enumerate(Cs):
- lr = LogisticRegression(
- C=C,
- fit_intercept=False,
- tol=1e-5,
- solver=solver,
- multi_class="ovr",
- random_state=0,
- max_iter=1000,
- )
- lr.fit(X, y)
- lr_coef = lr.coef_.ravel()
- assert_array_almost_equal(
- lr_coef, coefs[i], decimal=4, err_msg="with solver = %s" % solver
- )
- # test for fit_intercept=True
- for solver in ("lbfgs", "newton-cg", "newton-cholesky", "liblinear", "sag", "saga"):
- Cs = [1e3]
- coefs, Cs, _ = f(_logistic_regression_path)(
- X,
- y,
- Cs=Cs,
- tol=1e-6,
- solver=solver,
- intercept_scaling=10000.0,
- random_state=0,
- multi_class="ovr",
- )
- lr = LogisticRegression(
- C=Cs[0],
- tol=1e-6,
- intercept_scaling=10000.0,
- random_state=0,
- multi_class="ovr",
- solver=solver,
- )
- lr.fit(X, y)
- lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_])
- assert_array_almost_equal(
- lr_coef, coefs[0], decimal=4, err_msg="with solver = %s" % solver
- )
- def test_logistic_regression_path_convergence_fail():
- rng = np.random.RandomState(0)
- X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2)))
- y = [1] * 100 + [-1] * 100
- Cs = [1e3]
- # Check that the convergence message points to both a model agnostic
- # advice (scaling the data) and to the logistic regression specific
- # documentation that includes hints on the solver configuration.
- with pytest.warns(ConvergenceWarning) as record:
- _logistic_regression_path(
- X, y, Cs=Cs, tol=0.0, max_iter=1, random_state=0, verbose=0
- )
- assert len(record) == 1
- warn_msg = record[0].message.args[0]
- assert "lbfgs failed to converge" in warn_msg
- assert "Increase the number of iterations" in warn_msg
- assert "scale the data" in warn_msg
- assert "linear_model.html#logistic-regression" in warn_msg
- def test_liblinear_dual_random_state():
- # random_state is relevant for liblinear solver only if dual=True
- X, y = make_classification(n_samples=20, random_state=0)
- lr1 = LogisticRegression(
- random_state=0,
- dual=True,
- tol=1e-3,
- solver="liblinear",
- multi_class="ovr",
- )
- lr1.fit(X, y)
- lr2 = LogisticRegression(
- random_state=0,
- dual=True,
- tol=1e-3,
- solver="liblinear",
- multi_class="ovr",
- )
- lr2.fit(X, y)
- lr3 = LogisticRegression(
- random_state=8,
- dual=True,
- tol=1e-3,
- solver="liblinear",
- multi_class="ovr",
- )
- lr3.fit(X, y)
- # same result for same random state
- assert_array_almost_equal(lr1.coef_, lr2.coef_)
- # different results for different random states
- msg = "Arrays are not almost equal to 6 decimals"
- with pytest.raises(AssertionError, match=msg):
- assert_array_almost_equal(lr1.coef_, lr3.coef_)
- def test_logistic_cv():
- # test for LogisticRegressionCV object
- n_samples, n_features = 50, 5
- rng = np.random.RandomState(0)
- X_ref = rng.randn(n_samples, n_features)
- y = np.sign(X_ref.dot(5 * rng.randn(n_features)))
- X_ref -= X_ref.mean()
- X_ref /= X_ref.std()
- lr_cv = LogisticRegressionCV(
- Cs=[1.0], fit_intercept=False, solver="liblinear", multi_class="ovr", cv=3
- )
- lr_cv.fit(X_ref, y)
- lr = LogisticRegression(
- C=1.0, fit_intercept=False, solver="liblinear", multi_class="ovr"
- )
- lr.fit(X_ref, y)
- assert_array_almost_equal(lr.coef_, lr_cv.coef_)
- assert_array_equal(lr_cv.coef_.shape, (1, n_features))
- assert_array_equal(lr_cv.classes_, [-1, 1])
- assert len(lr_cv.classes_) == 2
- coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values()))
- assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features))
- assert_array_equal(lr_cv.Cs_.shape, (1,))
- scores = np.asarray(list(lr_cv.scores_.values()))
- assert_array_equal(scores.shape, (1, 3, 1))
- @pytest.mark.parametrize(
- "scoring, multiclass_agg_list",
- [
- ("accuracy", [""]),
- ("precision", ["_macro", "_weighted"]),
- # no need to test for micro averaging because it
- # is the same as accuracy for f1, precision,
- # and recall (see https://github.com/
- # scikit-learn/scikit-learn/pull/
- # 11578#discussion_r203250062)
- ("f1", ["_macro", "_weighted"]),
- ("neg_log_loss", [""]),
- ("recall", ["_macro", "_weighted"]),
- ],
- )
- def test_logistic_cv_multinomial_score(scoring, multiclass_agg_list):
- # test that LogisticRegressionCV uses the right score to compute its
- # cross-validation scores when using a multinomial scoring
- # see https://github.com/scikit-learn/scikit-learn/issues/8720
- X, y = make_classification(
- n_samples=100, random_state=0, n_classes=3, n_informative=6
- )
- train, test = np.arange(80), np.arange(80, 100)
- lr = LogisticRegression(C=1.0, multi_class="multinomial")
- # we use lbfgs to support multinomial
- params = lr.get_params()
- # we store the params to set them further in _log_reg_scoring_path
- for key in ["C", "n_jobs", "warm_start"]:
- del params[key]
- lr.fit(X[train], y[train])
- for averaging in multiclass_agg_list:
- scorer = get_scorer(scoring + averaging)
- assert_array_almost_equal(
- _log_reg_scoring_path(
- X, y, train, test, Cs=[1.0], scoring=scorer, **params
- )[2][0],
- scorer(lr, X[test], y[test]),
- )
- def test_multinomial_logistic_regression_string_inputs():
- # Test with string labels for LogisticRegression(CV)
- n_samples, n_features, n_classes = 50, 5, 3
- X_ref, y = make_classification(
- n_samples=n_samples,
- n_features=n_features,
- n_classes=n_classes,
- n_informative=3,
- random_state=0,
- )
- y_str = LabelEncoder().fit(["bar", "baz", "foo"]).inverse_transform(y)
- # For numerical labels, let y values be taken from set (-1, 0, 1)
- y = np.array(y) - 1
- # Test for string labels
- lr = LogisticRegression(multi_class="multinomial")
- lr_cv = LogisticRegressionCV(multi_class="multinomial", Cs=3)
- lr_str = LogisticRegression(multi_class="multinomial")
- lr_cv_str = LogisticRegressionCV(multi_class="multinomial", Cs=3)
- lr.fit(X_ref, y)
- lr_cv.fit(X_ref, y)
- lr_str.fit(X_ref, y_str)
- lr_cv_str.fit(X_ref, y_str)
- assert_array_almost_equal(lr.coef_, lr_str.coef_)
- assert sorted(lr_str.classes_) == ["bar", "baz", "foo"]
- assert_array_almost_equal(lr_cv.coef_, lr_cv_str.coef_)
- assert sorted(lr_str.classes_) == ["bar", "baz", "foo"]
- assert sorted(lr_cv_str.classes_) == ["bar", "baz", "foo"]
- # The predictions should be in original labels
- assert sorted(np.unique(lr_str.predict(X_ref))) == ["bar", "baz", "foo"]
- assert sorted(np.unique(lr_cv_str.predict(X_ref))) == ["bar", "baz", "foo"]
- # Make sure class weights can be given with string labels
- lr_cv_str = LogisticRegression(
- class_weight={"bar": 1, "baz": 2, "foo": 0}, multi_class="multinomial"
- ).fit(X_ref, y_str)
- assert sorted(np.unique(lr_cv_str.predict(X_ref))) == ["bar", "baz"]
- def test_logistic_cv_sparse():
- X, y = make_classification(n_samples=50, n_features=5, random_state=0)
- X[X < 1.0] = 0.0
- csr = sparse.csr_matrix(X)
- clf = LogisticRegressionCV()
- clf.fit(X, y)
- clfs = LogisticRegressionCV()
- clfs.fit(csr, y)
- assert_array_almost_equal(clfs.coef_, clf.coef_)
- assert_array_almost_equal(clfs.intercept_, clf.intercept_)
- assert clfs.C_ == clf.C_
- def test_ovr_multinomial_iris():
- # Test that OvR and multinomial are correct using the iris dataset.
- train, target = iris.data, iris.target
- n_samples, n_features = train.shape
- # The cv indices from stratified kfold (where stratification is done based
- # on the fine-grained iris classes, i.e, before the classes 0 and 1 are
- # conflated) is used for both clf and clf1
- n_cv = 2
- cv = StratifiedKFold(n_cv)
- precomputed_folds = list(cv.split(train, target))
- # Train clf on the original dataset where classes 0 and 1 are separated
- clf = LogisticRegressionCV(cv=precomputed_folds, multi_class="ovr")
- clf.fit(train, target)
- # Conflate classes 0 and 1 and train clf1 on this modified dataset
- clf1 = LogisticRegressionCV(cv=precomputed_folds, multi_class="ovr")
- target_copy = target.copy()
- target_copy[target_copy == 0] = 1
- clf1.fit(train, target_copy)
- # Ensure that what OvR learns for class2 is same regardless of whether
- # classes 0 and 1 are separated or not
- assert_allclose(clf.scores_[2], clf1.scores_[2])
- assert_allclose(clf.intercept_[2:], clf1.intercept_)
- assert_allclose(clf.coef_[2][np.newaxis, :], clf1.coef_)
- # Test the shape of various attributes.
- assert clf.coef_.shape == (3, n_features)
- assert_array_equal(clf.classes_, [0, 1, 2])
- coefs_paths = np.asarray(list(clf.coefs_paths_.values()))
- assert coefs_paths.shape == (3, n_cv, 10, n_features + 1)
- assert clf.Cs_.shape == (10,)
- scores = np.asarray(list(clf.scores_.values()))
- assert scores.shape == (3, n_cv, 10)
- # Test that for the iris data multinomial gives a better accuracy than OvR
- for solver in ["lbfgs", "newton-cg", "sag", "saga"]:
- max_iter = 500 if solver in ["sag", "saga"] else 30
- clf_multi = LogisticRegressionCV(
- solver=solver,
- multi_class="multinomial",
- max_iter=max_iter,
- random_state=42,
- tol=1e-3 if solver in ["sag", "saga"] else 1e-2,
- cv=2,
- )
- if solver == "lbfgs":
- # lbfgs requires scaling to avoid convergence warnings
- train = scale(train)
- clf_multi.fit(train, target)
- multi_score = clf_multi.score(train, target)
- ovr_score = clf.score(train, target)
- assert multi_score > ovr_score
- # Test attributes of LogisticRegressionCV
- assert clf.coef_.shape == clf_multi.coef_.shape
- assert_array_equal(clf_multi.classes_, [0, 1, 2])
- coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values()))
- assert coefs_paths.shape == (3, n_cv, 10, n_features + 1)
- assert clf_multi.Cs_.shape == (10,)
- scores = np.asarray(list(clf_multi.scores_.values()))
- assert scores.shape == (3, n_cv, 10)
- def test_logistic_regression_solvers():
- """Test solvers converge to the same result."""
- X, y = make_classification(n_features=10, n_informative=5, random_state=0)
- params = dict(fit_intercept=False, random_state=42, multi_class="ovr")
- regressors = {
- solver: LogisticRegression(solver=solver, **params).fit(X, y)
- for solver in SOLVERS
- }
- for solver_1, solver_2 in itertools.combinations(regressors, r=2):
- assert_array_almost_equal(
- regressors[solver_1].coef_, regressors[solver_2].coef_, decimal=3
- )
- def test_logistic_regression_solvers_multiclass():
- """Test solvers converge to the same result for multiclass problems."""
- X, y = make_classification(
- n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0
- )
- tol = 1e-7
- params = dict(fit_intercept=False, tol=tol, random_state=42, multi_class="ovr")
- # Override max iteration count for specific solvers to allow for
- # proper convergence.
- solver_max_iter = {"sag": 1000, "saga": 10000}
- regressors = {
- solver: LogisticRegression(
- solver=solver, max_iter=solver_max_iter.get(solver, 100), **params
- ).fit(X, y)
- for solver in SOLVERS
- }
- for solver_1, solver_2 in itertools.combinations(regressors, r=2):
- assert_array_almost_equal(
- regressors[solver_1].coef_, regressors[solver_2].coef_, decimal=4
- )
- @pytest.mark.parametrize("weight", [{0: 0.1, 1: 0.2}, {0: 0.1, 1: 0.2, 2: 0.5}])
- @pytest.mark.parametrize("class_weight", ["weight", "balanced"])
- def test_logistic_regressioncv_class_weights(weight, class_weight):
- """Test class_weight for LogisticRegressionCV."""
- n_classes = len(weight)
- if class_weight == "weight":
- class_weight = weight
- X, y = make_classification(
- n_samples=30,
- n_features=3,
- n_repeated=0,
- n_informative=3,
- n_redundant=0,
- n_classes=n_classes,
- random_state=0,
- )
- params = dict(
- Cs=1,
- fit_intercept=False,
- multi_class="ovr",
- class_weight=class_weight,
- )
- clf_lbfgs = LogisticRegressionCV(solver="lbfgs", **params)
- clf_lbfgs.fit(X, y)
- for solver in set(SOLVERS) - set(["lbfgs"]):
- clf = LogisticRegressionCV(solver=solver, **params)
- if solver in ("sag", "saga"):
- clf.set_params(tol=1e-5, max_iter=10000, random_state=0)
- clf.fit(X, y)
- assert_allclose(clf.coef_, clf_lbfgs.coef_, rtol=1e-3)
- def test_logistic_regression_sample_weights():
- X, y = make_classification(
- n_samples=20, n_features=5, n_informative=3, n_classes=2, random_state=0
- )
- sample_weight = y + 1
- for LR in [LogisticRegression, LogisticRegressionCV]:
- kw = {"random_state": 42, "fit_intercept": False, "multi_class": "ovr"}
- if LR is LogisticRegressionCV:
- kw.update({"Cs": 3, "cv": 3})
- # Test that passing sample_weight as ones is the same as
- # not passing them at all (default None)
- for solver in ["lbfgs", "liblinear"]:
- clf_sw_none = LR(solver=solver, **kw)
- clf_sw_ones = LR(solver=solver, **kw)
- clf_sw_none.fit(X, y)
- clf_sw_ones.fit(X, y, sample_weight=np.ones(y.shape[0]))
- assert_allclose(clf_sw_none.coef_, clf_sw_ones.coef_, rtol=1e-4)
- # Test that sample weights work the same with the lbfgs,
- # newton-cg, newton-cholesky and 'sag' solvers
- clf_sw_lbfgs = LR(**kw)
- clf_sw_lbfgs.fit(X, y, sample_weight=sample_weight)
- for solver in set(SOLVERS) - set(("lbfgs", "saga")):
- clf_sw = LR(solver=solver, tol=1e-10 if solver == "sag" else 1e-5, **kw)
- # ignore convergence warning due to small dataset with sag
- with ignore_warnings():
- clf_sw.fit(X, y, sample_weight=sample_weight)
- assert_allclose(clf_sw_lbfgs.coef_, clf_sw.coef_, rtol=1e-4)
- # Test that passing class_weight as [1,2] is the same as
- # passing class weight = [1,1] but adjusting sample weights
- # to be 2 for all instances of class 2
- for solver in ["lbfgs", "liblinear"]:
- clf_cw_12 = LR(solver=solver, class_weight={0: 1, 1: 2}, **kw)
- clf_cw_12.fit(X, y)
- clf_sw_12 = LR(solver=solver, **kw)
- clf_sw_12.fit(X, y, sample_weight=sample_weight)
- assert_allclose(clf_cw_12.coef_, clf_sw_12.coef_, rtol=1e-4)
- # Test the above for l1 penalty and l2 penalty with dual=True.
- # since the patched liblinear code is different.
- clf_cw = LogisticRegression(
- solver="liblinear",
- fit_intercept=False,
- class_weight={0: 1, 1: 2},
- penalty="l1",
- tol=1e-5,
- random_state=42,
- multi_class="ovr",
- )
- clf_cw.fit(X, y)
- clf_sw = LogisticRegression(
- solver="liblinear",
- fit_intercept=False,
- penalty="l1",
- tol=1e-5,
- random_state=42,
- multi_class="ovr",
- )
- clf_sw.fit(X, y, sample_weight)
- assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4)
- clf_cw = LogisticRegression(
- solver="liblinear",
- fit_intercept=False,
- class_weight={0: 1, 1: 2},
- penalty="l2",
- dual=True,
- random_state=42,
- multi_class="ovr",
- )
- clf_cw.fit(X, y)
- clf_sw = LogisticRegression(
- solver="liblinear",
- fit_intercept=False,
- penalty="l2",
- dual=True,
- random_state=42,
- multi_class="ovr",
- )
- clf_sw.fit(X, y, sample_weight)
- assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4)
- def _compute_class_weight_dictionary(y):
- # helper for returning a dictionary instead of an array
- classes = np.unique(y)
- class_weight = compute_class_weight("balanced", classes=classes, y=y)
- class_weight_dict = dict(zip(classes, class_weight))
- return class_weight_dict
- def test_logistic_regression_class_weights():
- # Scale data to avoid convergence warnings with the lbfgs solver
- X_iris = scale(iris.data)
- # Multinomial case: remove 90% of class 0
- X = X_iris[45:, :]
- y = iris.target[45:]
- solvers = ("lbfgs", "newton-cg")
- class_weight_dict = _compute_class_weight_dictionary(y)
- for solver in solvers:
- clf1 = LogisticRegression(
- solver=solver, multi_class="multinomial", class_weight="balanced"
- )
- clf2 = LogisticRegression(
- solver=solver, multi_class="multinomial", class_weight=class_weight_dict
- )
- clf1.fit(X, y)
- clf2.fit(X, y)
- assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=4)
- # Binary case: remove 90% of class 0 and 100% of class 2
- X = X_iris[45:100, :]
- y = iris.target[45:100]
- class_weight_dict = _compute_class_weight_dictionary(y)
- for solver in set(SOLVERS) - set(("sag", "saga")):
- clf1 = LogisticRegression(
- solver=solver, multi_class="ovr", class_weight="balanced"
- )
- clf2 = LogisticRegression(
- solver=solver, multi_class="ovr", class_weight=class_weight_dict
- )
- clf1.fit(X, y)
- clf2.fit(X, y)
- assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=6)
- def test_logistic_regression_multinomial():
- # Tests for the multinomial option in logistic regression
- # Some basic attributes of Logistic Regression
- n_samples, n_features, n_classes = 50, 20, 3
- X, y = make_classification(
- n_samples=n_samples,
- n_features=n_features,
- n_informative=10,
- n_classes=n_classes,
- random_state=0,
- )
- X = StandardScaler(with_mean=False).fit_transform(X)
- # 'lbfgs' is used as a referenced
- solver = "lbfgs"
- ref_i = LogisticRegression(solver=solver, multi_class="multinomial")
- ref_w = LogisticRegression(
- solver=solver, multi_class="multinomial", fit_intercept=False
- )
- ref_i.fit(X, y)
- ref_w.fit(X, y)
- assert ref_i.coef_.shape == (n_classes, n_features)
- assert ref_w.coef_.shape == (n_classes, n_features)
- for solver in ["sag", "saga", "newton-cg"]:
- clf_i = LogisticRegression(
- solver=solver,
- multi_class="multinomial",
- random_state=42,
- max_iter=2000,
- tol=1e-7,
- )
- clf_w = LogisticRegression(
- solver=solver,
- multi_class="multinomial",
- random_state=42,
- max_iter=2000,
- tol=1e-7,
- fit_intercept=False,
- )
- clf_i.fit(X, y)
- clf_w.fit(X, y)
- assert clf_i.coef_.shape == (n_classes, n_features)
- assert clf_w.coef_.shape == (n_classes, n_features)
- # Compare solutions between lbfgs and the other solvers
- assert_allclose(ref_i.coef_, clf_i.coef_, rtol=1e-2)
- assert_allclose(ref_w.coef_, clf_w.coef_, rtol=1e-2)
- assert_allclose(ref_i.intercept_, clf_i.intercept_, rtol=1e-2)
- # Test that the path give almost the same results. However since in this
- # case we take the average of the coefs after fitting across all the
- # folds, it need not be exactly the same.
- for solver in ["lbfgs", "newton-cg", "sag", "saga"]:
- clf_path = LogisticRegressionCV(
- solver=solver, max_iter=2000, tol=1e-6, multi_class="multinomial", Cs=[1.0]
- )
- clf_path.fit(X, y)
- assert_allclose(clf_path.coef_, ref_i.coef_, rtol=2e-2)
- assert_allclose(clf_path.intercept_, ref_i.intercept_, rtol=2e-2)
- def test_liblinear_decision_function_zero():
- # Test negative prediction when decision_function values are zero.
- # Liblinear predicts the positive class when decision_function values
- # are zero. This is a test to verify that we do not do the same.
- # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600
- # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623
- X, y = make_classification(n_samples=5, n_features=5, random_state=0)
- clf = LogisticRegression(fit_intercept=False, solver="liblinear", multi_class="ovr")
- clf.fit(X, y)
- # Dummy data such that the decision function becomes zero.
- X = np.zeros((5, 5))
- assert_array_equal(clf.predict(X), np.zeros(5))
- def test_liblinear_logregcv_sparse():
- # Test LogRegCV with solver='liblinear' works for sparse matrices
- X, y = make_classification(n_samples=10, n_features=5, random_state=0)
- clf = LogisticRegressionCV(solver="liblinear", multi_class="ovr")
- clf.fit(sparse.csr_matrix(X), y)
- def test_saga_sparse():
- # Test LogRegCV with solver='liblinear' works for sparse matrices
- X, y = make_classification(n_samples=10, n_features=5, random_state=0)
- clf = LogisticRegressionCV(solver="saga", tol=1e-2)
- clf.fit(sparse.csr_matrix(X), y)
- def test_logreg_intercept_scaling_zero():
- # Test that intercept_scaling is ignored when fit_intercept is False
- clf = LogisticRegression(fit_intercept=False)
- clf.fit(X, Y1)
- assert clf.intercept_ == 0.0
- def test_logreg_l1():
- # Because liblinear penalizes the intercept and saga does not, we do not
- # fit the intercept to make it possible to compare the coefficients of
- # the two models at convergence.
- rng = np.random.RandomState(42)
- n_samples = 50
- X, y = make_classification(n_samples=n_samples, n_features=20, random_state=0)
- X_noise = rng.normal(size=(n_samples, 3))
- X_constant = np.ones(shape=(n_samples, 2))
- X = np.concatenate((X, X_noise, X_constant), axis=1)
- lr_liblinear = LogisticRegression(
- penalty="l1",
- C=1.0,
- solver="liblinear",
- fit_intercept=False,
- multi_class="ovr",
- tol=1e-10,
- )
- lr_liblinear.fit(X, y)
- lr_saga = LogisticRegression(
- penalty="l1",
- C=1.0,
- solver="saga",
- fit_intercept=False,
- multi_class="ovr",
- max_iter=1000,
- tol=1e-10,
- )
- lr_saga.fit(X, y)
- assert_array_almost_equal(lr_saga.coef_, lr_liblinear.coef_)
- # Noise and constant features should be regularized to zero by the l1
- # penalty
- assert_array_almost_equal(lr_liblinear.coef_[0, -5:], np.zeros(5))
- assert_array_almost_equal(lr_saga.coef_[0, -5:], np.zeros(5))
- def test_logreg_l1_sparse_data():
- # Because liblinear penalizes the intercept and saga does not, we do not
- # fit the intercept to make it possible to compare the coefficients of
- # the two models at convergence.
- rng = np.random.RandomState(42)
- n_samples = 50
- X, y = make_classification(n_samples=n_samples, n_features=20, random_state=0)
- X_noise = rng.normal(scale=0.1, size=(n_samples, 3))
- X_constant = np.zeros(shape=(n_samples, 2))
- X = np.concatenate((X, X_noise, X_constant), axis=1)
- X[X < 1] = 0
- X = sparse.csr_matrix(X)
- lr_liblinear = LogisticRegression(
- penalty="l1",
- C=1.0,
- solver="liblinear",
- fit_intercept=False,
- multi_class="ovr",
- tol=1e-10,
- )
- lr_liblinear.fit(X, y)
- lr_saga = LogisticRegression(
- penalty="l1",
- C=1.0,
- solver="saga",
- fit_intercept=False,
- multi_class="ovr",
- max_iter=1000,
- tol=1e-10,
- )
- lr_saga.fit(X, y)
- assert_array_almost_equal(lr_saga.coef_, lr_liblinear.coef_)
- # Noise and constant features should be regularized to zero by the l1
- # penalty
- assert_array_almost_equal(lr_liblinear.coef_[0, -5:], np.zeros(5))
- assert_array_almost_equal(lr_saga.coef_[0, -5:], np.zeros(5))
- # Check that solving on the sparse and dense data yield the same results
- lr_saga_dense = LogisticRegression(
- penalty="l1",
- C=1.0,
- solver="saga",
- fit_intercept=False,
- multi_class="ovr",
- max_iter=1000,
- tol=1e-10,
- )
- lr_saga_dense.fit(X.toarray(), y)
- assert_array_almost_equal(lr_saga.coef_, lr_saga_dense.coef_)
- @pytest.mark.parametrize("random_seed", [42])
- @pytest.mark.parametrize("penalty", ["l1", "l2"])
- def test_logistic_regression_cv_refit(random_seed, penalty):
- # Test that when refit=True, logistic regression cv with the saga solver
- # converges to the same solution as logistic regression with a fixed
- # regularization parameter.
- # Internally the LogisticRegressionCV model uses a warm start to refit on
- # the full data model with the optimal C found by CV. As the penalized
- # logistic regression loss is convex, we should still recover exactly
- # the same solution as long as the stopping criterion is strict enough (and
- # that there are no exactly duplicated features when penalty='l1').
- X, y = make_classification(n_samples=100, n_features=20, random_state=random_seed)
- common_params = dict(
- solver="saga",
- penalty=penalty,
- random_state=random_seed,
- max_iter=1000,
- tol=1e-12,
- )
- lr_cv = LogisticRegressionCV(Cs=[1.0], refit=True, **common_params)
- lr_cv.fit(X, y)
- lr = LogisticRegression(C=1.0, **common_params)
- lr.fit(X, y)
- assert_array_almost_equal(lr_cv.coef_, lr.coef_)
- def test_logreg_predict_proba_multinomial():
- X, y = make_classification(
- n_samples=10, n_features=20, random_state=0, n_classes=3, n_informative=10
- )
- # Predicted probabilities using the true-entropy loss should give a
- # smaller loss than those using the ovr method.
- clf_multi = LogisticRegression(multi_class="multinomial", solver="lbfgs")
- clf_multi.fit(X, y)
- clf_multi_loss = log_loss(y, clf_multi.predict_proba(X))
- clf_ovr = LogisticRegression(multi_class="ovr", solver="lbfgs")
- clf_ovr.fit(X, y)
- clf_ovr_loss = log_loss(y, clf_ovr.predict_proba(X))
- assert clf_ovr_loss > clf_multi_loss
- # Predicted probabilities using the soft-max function should give a
- # smaller loss than those using the logistic function.
- clf_multi_loss = log_loss(y, clf_multi.predict_proba(X))
- clf_wrong_loss = log_loss(y, clf_multi._predict_proba_lr(X))
- assert clf_wrong_loss > clf_multi_loss
- @pytest.mark.parametrize("max_iter", np.arange(1, 5))
- @pytest.mark.parametrize("multi_class", ["ovr", "multinomial"])
- @pytest.mark.parametrize(
- "solver, message",
- [
- (
- "newton-cg",
- "newton-cg failed to converge. Increase the number of iterations.",
- ),
- (
- "liblinear",
- "Liblinear failed to converge, increase the number of iterations.",
- ),
- ("sag", "The max_iter was reached which means the coef_ did not converge"),
- ("saga", "The max_iter was reached which means the coef_ did not converge"),
- ("lbfgs", "lbfgs failed to converge"),
- ("newton-cholesky", "Newton solver did not converge after [0-9]* iterations"),
- ],
- )
- def test_max_iter(max_iter, multi_class, solver, message):
- # Test that the maximum number of iteration is reached
- X, y_bin = iris.data, iris.target.copy()
- y_bin[y_bin == 2] = 0
- if solver in ("liblinear", "newton-cholesky") and multi_class == "multinomial":
- pytest.skip("'multinomial' is not supported by liblinear and newton-cholesky")
- if solver == "newton-cholesky" and max_iter > 1:
- pytest.skip("solver newton-cholesky might converge very fast")
- lr = LogisticRegression(
- max_iter=max_iter,
- tol=1e-15,
- multi_class=multi_class,
- random_state=0,
- solver=solver,
- )
- with pytest.warns(ConvergenceWarning, match=message):
- lr.fit(X, y_bin)
- assert lr.n_iter_[0] == max_iter
- @pytest.mark.parametrize("solver", SOLVERS)
- def test_n_iter(solver):
- # Test that self.n_iter_ has the correct format.
- X, y = iris.data, iris.target
- if solver == "lbfgs":
- # lbfgs requires scaling to avoid convergence warnings
- X = scale(X)
- n_classes = np.unique(y).shape[0]
- assert n_classes == 3
- # Also generate a binary classification sub-problem.
- y_bin = y.copy()
- y_bin[y_bin == 2] = 0
- n_Cs = 4
- n_cv_fold = 2
- # Binary classification case
- clf = LogisticRegression(tol=1e-2, C=1.0, solver=solver, random_state=42)
- clf.fit(X, y_bin)
- assert clf.n_iter_.shape == (1,)
- clf_cv = LogisticRegressionCV(
- tol=1e-2, solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42
- )
- clf_cv.fit(X, y_bin)
- assert clf_cv.n_iter_.shape == (1, n_cv_fold, n_Cs)
- # OvR case
- clf.set_params(multi_class="ovr").fit(X, y)
- assert clf.n_iter_.shape == (n_classes,)
- clf_cv.set_params(multi_class="ovr").fit(X, y)
- assert clf_cv.n_iter_.shape == (n_classes, n_cv_fold, n_Cs)
- # multinomial case
- if solver in ("liblinear", "newton-cholesky"):
- # This solver only supports one-vs-rest multiclass classification.
- return
- # When using the multinomial objective function, there is a single
- # optimization problem to solve for all classes at once:
- clf.set_params(multi_class="multinomial").fit(X, y)
- assert clf.n_iter_.shape == (1,)
- clf_cv.set_params(multi_class="multinomial").fit(X, y)
- assert clf_cv.n_iter_.shape == (1, n_cv_fold, n_Cs)
- @pytest.mark.parametrize("solver", sorted(set(SOLVERS) - set(["liblinear"])))
- @pytest.mark.parametrize("warm_start", (True, False))
- @pytest.mark.parametrize("fit_intercept", (True, False))
- @pytest.mark.parametrize("multi_class", ["ovr", "multinomial"])
- def test_warm_start(solver, warm_start, fit_intercept, multi_class):
- # A 1-iteration second fit on same data should give almost same result
- # with warm starting, and quite different result without warm starting.
- # Warm starting does not work with liblinear solver.
- X, y = iris.data, iris.target
- if solver == "newton-cholesky" and multi_class == "multinomial":
- # solver does only support OvR
- return
- clf = LogisticRegression(
- tol=1e-4,
- multi_class=multi_class,
- warm_start=warm_start,
- solver=solver,
- random_state=42,
- fit_intercept=fit_intercept,
- )
- with ignore_warnings(category=ConvergenceWarning):
- clf.fit(X, y)
- coef_1 = clf.coef_
- clf.max_iter = 1
- clf.fit(X, y)
- cum_diff = np.sum(np.abs(coef_1 - clf.coef_))
- msg = (
- "Warm starting issue with %s solver in %s mode "
- "with fit_intercept=%s and warm_start=%s"
- % (solver, multi_class, str(fit_intercept), str(warm_start))
- )
- if warm_start:
- assert 2.0 > cum_diff, msg
- else:
- assert cum_diff > 2.0, msg
- def test_saga_vs_liblinear():
- iris = load_iris()
- X, y = iris.data, iris.target
- X = np.concatenate([X] * 3)
- y = np.concatenate([y] * 3)
- X_bin = X[y <= 1]
- y_bin = y[y <= 1] * 2 - 1
- X_sparse, y_sparse = make_classification(
- n_samples=50, n_features=20, random_state=0
- )
- X_sparse = sparse.csr_matrix(X_sparse)
- for X, y in ((X_bin, y_bin), (X_sparse, y_sparse)):
- for penalty in ["l1", "l2"]:
- n_samples = X.shape[0]
- # alpha=1e-3 is time consuming
- for alpha in np.logspace(-1, 1, 3):
- saga = LogisticRegression(
- C=1.0 / (n_samples * alpha),
- solver="saga",
- multi_class="ovr",
- max_iter=200,
- fit_intercept=False,
- penalty=penalty,
- random_state=0,
- tol=1e-6,
- )
- liblinear = LogisticRegression(
- C=1.0 / (n_samples * alpha),
- solver="liblinear",
- multi_class="ovr",
- max_iter=200,
- fit_intercept=False,
- penalty=penalty,
- random_state=0,
- tol=1e-6,
- )
- saga.fit(X, y)
- liblinear.fit(X, y)
- # Convergence for alpha=1e-3 is very slow
- assert_array_almost_equal(saga.coef_, liblinear.coef_, 3)
- @pytest.mark.parametrize("multi_class", ["ovr", "multinomial"])
- @pytest.mark.parametrize(
- "solver", ["liblinear", "newton-cg", "newton-cholesky", "saga"]
- )
- @pytest.mark.parametrize("fit_intercept", [False, True])
- def test_dtype_match(solver, multi_class, fit_intercept):
- # Test that np.float32 input data is not cast to np.float64 when possible
- # and that the output is approximately the same no matter the input format.
- if solver in ("liblinear", "newton-cholesky") and multi_class == "multinomial":
- pytest.skip(f"Solver={solver} does not support multinomial logistic.")
- out32_type = np.float64 if solver == "liblinear" else np.float32
- X_32 = np.array(X).astype(np.float32)
- y_32 = np.array(Y1).astype(np.float32)
- X_64 = np.array(X).astype(np.float64)
- y_64 = np.array(Y1).astype(np.float64)
- X_sparse_32 = sparse.csr_matrix(X, dtype=np.float32)
- X_sparse_64 = sparse.csr_matrix(X, dtype=np.float64)
- solver_tol = 5e-4
- lr_templ = LogisticRegression(
- solver=solver,
- multi_class=multi_class,
- random_state=42,
- tol=solver_tol,
- fit_intercept=fit_intercept,
- )
- # Check 32-bit type consistency
- lr_32 = clone(lr_templ)
- lr_32.fit(X_32, y_32)
- assert lr_32.coef_.dtype == out32_type
- # Check 32-bit type consistency with sparsity
- lr_32_sparse = clone(lr_templ)
- lr_32_sparse.fit(X_sparse_32, y_32)
- assert lr_32_sparse.coef_.dtype == out32_type
- # Check 64-bit type consistency
- lr_64 = clone(lr_templ)
- lr_64.fit(X_64, y_64)
- assert lr_64.coef_.dtype == np.float64
- # Check 64-bit type consistency with sparsity
- lr_64_sparse = clone(lr_templ)
- lr_64_sparse.fit(X_sparse_64, y_64)
- assert lr_64_sparse.coef_.dtype == np.float64
- # solver_tol bounds the norm of the loss gradient
- # dw ~= inv(H)*grad ==> |dw| ~= |inv(H)| * solver_tol, where H - hessian
- #
- # See https://github.com/scikit-learn/scikit-learn/pull/13645
- #
- # with Z = np.hstack((np.ones((3,1)), np.array(X)))
- # In [8]: np.linalg.norm(np.diag([0,2,2]) + np.linalg.inv((Z.T @ Z)/4))
- # Out[8]: 1.7193336918135917
- # factor of 2 to get the ball diameter
- atol = 2 * 1.72 * solver_tol
- if os.name == "nt" and _IS_32BIT:
- # FIXME
- atol = 1e-2
- # Check accuracy consistency
- assert_allclose(lr_32.coef_, lr_64.coef_.astype(np.float32), atol=atol)
- if solver == "saga" and fit_intercept:
- # FIXME: SAGA on sparse data fits the intercept inaccurately with the
- # default tol and max_iter parameters.
- atol = 1e-1
- assert_allclose(lr_32.coef_, lr_32_sparse.coef_, atol=atol)
- assert_allclose(lr_64.coef_, lr_64_sparse.coef_, atol=atol)
- def test_warm_start_converge_LR():
- # Test to see that the logistic regression converges on warm start,
- # with multi_class='multinomial'. Non-regressive test for #10836
- rng = np.random.RandomState(0)
- X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2)))
- y = np.array([1] * 100 + [-1] * 100)
- lr_no_ws = LogisticRegression(
- multi_class="multinomial", solver="sag", warm_start=False, random_state=0
- )
- lr_ws = LogisticRegression(
- multi_class="multinomial", solver="sag", warm_start=True, random_state=0
- )
- lr_no_ws_loss = log_loss(y, lr_no_ws.fit(X, y).predict_proba(X))
- for i in range(5):
- lr_ws.fit(X, y)
- lr_ws_loss = log_loss(y, lr_ws.predict_proba(X))
- assert_allclose(lr_no_ws_loss, lr_ws_loss, rtol=1e-5)
- def test_elastic_net_coeffs():
- # make sure elasticnet penalty gives different coefficients from l1 and l2
- # with saga solver (l1_ratio different from 0 or 1)
- X, y = make_classification(random_state=0)
- C = 2.0
- l1_ratio = 0.5
- coeffs = list()
- for penalty, ratio in (("elasticnet", l1_ratio), ("l1", None), ("l2", None)):
- lr = LogisticRegression(
- penalty=penalty,
- C=C,
- solver="saga",
- random_state=0,
- l1_ratio=ratio,
- tol=1e-3,
- max_iter=200,
- )
- lr.fit(X, y)
- coeffs.append(lr.coef_)
- elastic_net_coeffs, l1_coeffs, l2_coeffs = coeffs
- # make sure coeffs differ by at least .1
- assert not np.allclose(elastic_net_coeffs, l1_coeffs, rtol=0, atol=0.1)
- assert not np.allclose(elastic_net_coeffs, l2_coeffs, rtol=0, atol=0.1)
- assert not np.allclose(l2_coeffs, l1_coeffs, rtol=0, atol=0.1)
- @pytest.mark.parametrize("C", [0.001, 0.1, 1, 10, 100, 1000, 1e6])
- @pytest.mark.parametrize("penalty, l1_ratio", [("l1", 1), ("l2", 0)])
- def test_elastic_net_l1_l2_equivalence(C, penalty, l1_ratio):
- # Make sure elasticnet is equivalent to l1 when l1_ratio=1 and to l2 when
- # l1_ratio=0.
- X, y = make_classification(random_state=0)
- lr_enet = LogisticRegression(
- penalty="elasticnet",
- C=C,
- l1_ratio=l1_ratio,
- solver="saga",
- random_state=0,
- tol=1e-2,
- )
- lr_expected = LogisticRegression(
- penalty=penalty, C=C, solver="saga", random_state=0, tol=1e-2
- )
- lr_enet.fit(X, y)
- lr_expected.fit(X, y)
- assert_array_almost_equal(lr_enet.coef_, lr_expected.coef_)
- @pytest.mark.parametrize("C", [0.001, 1, 100, 1e6])
- def test_elastic_net_vs_l1_l2(C):
- # Make sure that elasticnet with grid search on l1_ratio gives same or
- # better results than just l1 or just l2.
- X, y = make_classification(500, random_state=0)
- X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
- param_grid = {"l1_ratio": np.linspace(0, 1, 5)}
- enet_clf = LogisticRegression(
- penalty="elasticnet", C=C, solver="saga", random_state=0, tol=1e-2
- )
- gs = GridSearchCV(enet_clf, param_grid, refit=True)
- l1_clf = LogisticRegression(
- penalty="l1", C=C, solver="saga", random_state=0, tol=1e-2
- )
- l2_clf = LogisticRegression(
- penalty="l2", C=C, solver="saga", random_state=0, tol=1e-2
- )
- for clf in (gs, l1_clf, l2_clf):
- clf.fit(X_train, y_train)
- assert gs.score(X_test, y_test) >= l1_clf.score(X_test, y_test)
- assert gs.score(X_test, y_test) >= l2_clf.score(X_test, y_test)
- @pytest.mark.parametrize("C", np.logspace(-3, 2, 4))
- @pytest.mark.parametrize("l1_ratio", [0.1, 0.5, 0.9])
- def test_LogisticRegression_elastic_net_objective(C, l1_ratio):
- # Check that training with a penalty matching the objective leads
- # to a lower objective.
- # Here we train a logistic regression with l2 (a) and elasticnet (b)
- # penalties, and compute the elasticnet objective. That of a should be
- # greater than that of b (both objectives are convex).
- X, y = make_classification(
- n_samples=1000,
- n_classes=2,
- n_features=20,
- n_informative=10,
- n_redundant=0,
- n_repeated=0,
- random_state=0,
- )
- X = scale(X)
- lr_enet = LogisticRegression(
- penalty="elasticnet",
- solver="saga",
- random_state=0,
- C=C,
- l1_ratio=l1_ratio,
- fit_intercept=False,
- )
- lr_l2 = LogisticRegression(
- penalty="l2", solver="saga", random_state=0, C=C, fit_intercept=False
- )
- lr_enet.fit(X, y)
- lr_l2.fit(X, y)
- def enet_objective(lr):
- coef = lr.coef_.ravel()
- obj = C * log_loss(y, lr.predict_proba(X))
- obj += l1_ratio * np.sum(np.abs(coef))
- obj += (1.0 - l1_ratio) * 0.5 * np.dot(coef, coef)
- return obj
- assert enet_objective(lr_enet) < enet_objective(lr_l2)
- @pytest.mark.parametrize("multi_class", ("ovr", "multinomial"))
- def test_LogisticRegressionCV_GridSearchCV_elastic_net(multi_class):
- # make sure LogisticRegressionCV gives same best params (l1 and C) as
- # GridSearchCV when penalty is elasticnet
- if multi_class == "ovr":
- # This is actually binary classification, ovr multiclass is treated in
- # test_LogisticRegressionCV_GridSearchCV_elastic_net_ovr
- X, y = make_classification(random_state=0)
- else:
- X, y = make_classification(
- n_samples=100, n_classes=3, n_informative=3, random_state=0
- )
- cv = StratifiedKFold(5)
- l1_ratios = np.linspace(0, 1, 3)
- Cs = np.logspace(-4, 4, 3)
- lrcv = LogisticRegressionCV(
- penalty="elasticnet",
- Cs=Cs,
- solver="saga",
- cv=cv,
- l1_ratios=l1_ratios,
- random_state=0,
- multi_class=multi_class,
- tol=1e-2,
- )
- lrcv.fit(X, y)
- param_grid = {"C": Cs, "l1_ratio": l1_ratios}
- lr = LogisticRegression(
- penalty="elasticnet",
- solver="saga",
- random_state=0,
- multi_class=multi_class,
- tol=1e-2,
- )
- gs = GridSearchCV(lr, param_grid, cv=cv)
- gs.fit(X, y)
- assert gs.best_params_["l1_ratio"] == lrcv.l1_ratio_[0]
- assert gs.best_params_["C"] == lrcv.C_[0]
- def test_LogisticRegressionCV_GridSearchCV_elastic_net_ovr():
- # make sure LogisticRegressionCV gives same best params (l1 and C) as
- # GridSearchCV when penalty is elasticnet and multiclass is ovr. We can't
- # compare best_params like in the previous test because
- # LogisticRegressionCV with multi_class='ovr' will have one C and one
- # l1_param for each class, while LogisticRegression will share the
- # parameters over the *n_classes* classifiers.
- X, y = make_classification(
- n_samples=100, n_classes=3, n_informative=3, random_state=0
- )
- X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
- cv = StratifiedKFold(5)
- l1_ratios = np.linspace(0, 1, 3)
- Cs = np.logspace(-4, 4, 3)
- lrcv = LogisticRegressionCV(
- penalty="elasticnet",
- Cs=Cs,
- solver="saga",
- cv=cv,
- l1_ratios=l1_ratios,
- random_state=0,
- multi_class="ovr",
- tol=1e-2,
- )
- lrcv.fit(X_train, y_train)
- param_grid = {"C": Cs, "l1_ratio": l1_ratios}
- lr = LogisticRegression(
- penalty="elasticnet",
- solver="saga",
- random_state=0,
- multi_class="ovr",
- tol=1e-2,
- )
- gs = GridSearchCV(lr, param_grid, cv=cv)
- gs.fit(X_train, y_train)
- # Check that predictions are 80% the same
- assert (lrcv.predict(X_train) == gs.predict(X_train)).mean() >= 0.8
- assert (lrcv.predict(X_test) == gs.predict(X_test)).mean() >= 0.8
- @pytest.mark.parametrize("penalty", ("l2", "elasticnet"))
- @pytest.mark.parametrize("multi_class", ("ovr", "multinomial", "auto"))
- def test_LogisticRegressionCV_no_refit(penalty, multi_class):
- # Test LogisticRegressionCV attribute shapes when refit is False
- n_classes = 3
- n_features = 20
- X, y = make_classification(
- n_samples=200,
- n_classes=n_classes,
- n_informative=n_classes,
- n_features=n_features,
- random_state=0,
- )
- Cs = np.logspace(-4, 4, 3)
- if penalty == "elasticnet":
- l1_ratios = np.linspace(0, 1, 2)
- else:
- l1_ratios = None
- lrcv = LogisticRegressionCV(
- penalty=penalty,
- Cs=Cs,
- solver="saga",
- l1_ratios=l1_ratios,
- random_state=0,
- multi_class=multi_class,
- tol=1e-2,
- refit=False,
- )
- lrcv.fit(X, y)
- assert lrcv.C_.shape == (n_classes,)
- assert lrcv.l1_ratio_.shape == (n_classes,)
- assert lrcv.coef_.shape == (n_classes, n_features)
- def test_LogisticRegressionCV_elasticnet_attribute_shapes():
- # Make sure the shapes of scores_ and coefs_paths_ attributes are correct
- # when using elasticnet (added one dimension for l1_ratios)
- n_classes = 3
- n_features = 20
- X, y = make_classification(
- n_samples=200,
- n_classes=n_classes,
- n_informative=n_classes,
- n_features=n_features,
- random_state=0,
- )
- Cs = np.logspace(-4, 4, 3)
- l1_ratios = np.linspace(0, 1, 2)
- n_folds = 2
- lrcv = LogisticRegressionCV(
- penalty="elasticnet",
- Cs=Cs,
- solver="saga",
- cv=n_folds,
- l1_ratios=l1_ratios,
- multi_class="ovr",
- random_state=0,
- tol=1e-2,
- )
- lrcv.fit(X, y)
- coefs_paths = np.asarray(list(lrcv.coefs_paths_.values()))
- assert coefs_paths.shape == (
- n_classes,
- n_folds,
- Cs.size,
- l1_ratios.size,
- n_features + 1,
- )
- scores = np.asarray(list(lrcv.scores_.values()))
- assert scores.shape == (n_classes, n_folds, Cs.size, l1_ratios.size)
- assert lrcv.n_iter_.shape == (n_classes, n_folds, Cs.size, l1_ratios.size)
- def test_l1_ratio_non_elasticnet():
- msg = (
- r"l1_ratio parameter is only used when penalty is"
- r" 'elasticnet'\. Got \(penalty=l1\)"
- )
- with pytest.warns(UserWarning, match=msg):
- LogisticRegression(penalty="l1", solver="saga", l1_ratio=0.5).fit(X, Y1)
- @pytest.mark.parametrize("C", np.logspace(-3, 2, 4))
- @pytest.mark.parametrize("l1_ratio", [0.1, 0.5, 0.9])
- def test_elastic_net_versus_sgd(C, l1_ratio):
- # Compare elasticnet penalty in LogisticRegression() and SGD(loss='log')
- n_samples = 500
- X, y = make_classification(
- n_samples=n_samples,
- n_classes=2,
- n_features=5,
- n_informative=5,
- n_redundant=0,
- n_repeated=0,
- random_state=1,
- )
- X = scale(X)
- sgd = SGDClassifier(
- penalty="elasticnet",
- random_state=1,
- fit_intercept=False,
- tol=None,
- max_iter=2000,
- l1_ratio=l1_ratio,
- alpha=1.0 / C / n_samples,
- loss="log_loss",
- )
- log = LogisticRegression(
- penalty="elasticnet",
- random_state=1,
- fit_intercept=False,
- tol=1e-5,
- max_iter=1000,
- l1_ratio=l1_ratio,
- C=C,
- solver="saga",
- )
- sgd.fit(X, y)
- log.fit(X, y)
- assert_array_almost_equal(sgd.coef_, log.coef_, decimal=1)
- def test_logistic_regression_path_coefs_multinomial():
- # Make sure that the returned coefs by logistic_regression_path when
- # multi_class='multinomial' don't override each other (used to be a
- # bug).
- X, y = make_classification(
- n_samples=200,
- n_classes=3,
- n_informative=2,
- n_redundant=0,
- n_clusters_per_class=1,
- random_state=0,
- n_features=2,
- )
- Cs = [0.00001, 1, 10000]
- coefs, _, _ = _logistic_regression_path(
- X,
- y,
- penalty="l1",
- Cs=Cs,
- solver="saga",
- random_state=0,
- multi_class="multinomial",
- )
- with pytest.raises(AssertionError):
- assert_array_almost_equal(coefs[0], coefs[1], decimal=1)
- with pytest.raises(AssertionError):
- assert_array_almost_equal(coefs[0], coefs[2], decimal=1)
- with pytest.raises(AssertionError):
- assert_array_almost_equal(coefs[1], coefs[2], decimal=1)
- @pytest.mark.parametrize(
- "est",
- [
- LogisticRegression(random_state=0, max_iter=500),
- LogisticRegressionCV(random_state=0, cv=3, Cs=3, tol=1e-3, max_iter=500),
- ],
- ids=lambda x: x.__class__.__name__,
- )
- @pytest.mark.parametrize("solver", SOLVERS)
- def test_logistic_regression_multi_class_auto(est, solver):
- # check multi_class='auto' => multi_class='ovr'
- # iff binary y or liblinear or newton-cholesky
- def fit(X, y, **kw):
- return clone(est).set_params(**kw).fit(X, y)
- scaled_data = scale(iris.data)
- X = scaled_data[::10]
- X2 = scaled_data[1::10]
- y_multi = iris.target[::10]
- y_bin = y_multi == 0
- est_auto_bin = fit(X, y_bin, multi_class="auto", solver=solver)
- est_ovr_bin = fit(X, y_bin, multi_class="ovr", solver=solver)
- assert_allclose(est_auto_bin.coef_, est_ovr_bin.coef_)
- assert_allclose(est_auto_bin.predict_proba(X2), est_ovr_bin.predict_proba(X2))
- est_auto_multi = fit(X, y_multi, multi_class="auto", solver=solver)
- if solver in ("liblinear", "newton-cholesky"):
- est_ovr_multi = fit(X, y_multi, multi_class="ovr", solver=solver)
- assert_allclose(est_auto_multi.coef_, est_ovr_multi.coef_)
- assert_allclose(
- est_auto_multi.predict_proba(X2), est_ovr_multi.predict_proba(X2)
- )
- else:
- est_multi_multi = fit(X, y_multi, multi_class="multinomial", solver=solver)
- assert_allclose(est_auto_multi.coef_, est_multi_multi.coef_)
- assert_allclose(
- est_auto_multi.predict_proba(X2), est_multi_multi.predict_proba(X2)
- )
- # Make sure multi_class='ovr' is distinct from ='multinomial'
- assert not np.allclose(
- est_auto_bin.coef_,
- fit(X, y_bin, multi_class="multinomial", solver=solver).coef_,
- )
- assert not np.allclose(
- est_auto_bin.coef_,
- fit(X, y_multi, multi_class="multinomial", solver=solver).coef_,
- )
- @pytest.mark.parametrize("solver", sorted(set(SOLVERS) - set(["liblinear"])))
- def test_penalty_none(solver):
- # - Make sure warning is raised if penalty=None and C is set to a
- # non-default value.
- # - Make sure setting penalty=None is equivalent to setting C=np.inf with
- # l2 penalty.
- X, y = make_classification(n_samples=1000, n_redundant=0, random_state=0)
- msg = "Setting penalty=None will ignore the C"
- lr = LogisticRegression(penalty=None, solver=solver, C=4)
- with pytest.warns(UserWarning, match=msg):
- lr.fit(X, y)
- lr_none = LogisticRegression(penalty=None, solver=solver, random_state=0)
- lr_l2_C_inf = LogisticRegression(
- penalty="l2", C=np.inf, solver=solver, random_state=0
- )
- pred_none = lr_none.fit(X, y).predict(X)
- pred_l2_C_inf = lr_l2_C_inf.fit(X, y).predict(X)
- assert_array_equal(pred_none, pred_l2_C_inf)
- @pytest.mark.parametrize(
- "params",
- [
- {"penalty": "l1", "dual": False, "tol": 1e-6, "max_iter": 1000},
- {"penalty": "l2", "dual": True, "tol": 1e-12, "max_iter": 1000},
- {"penalty": "l2", "dual": False, "tol": 1e-12, "max_iter": 1000},
- ],
- )
- def test_logisticregression_liblinear_sample_weight(params):
- # check that we support sample_weight with liblinear in all possible cases:
- # l1-primal, l2-primal, l2-dual
- X = np.array(
- [
- [1, 3],
- [1, 3],
- [1, 3],
- [1, 3],
- [2, 1],
- [2, 1],
- [2, 1],
- [2, 1],
- [3, 3],
- [3, 3],
- [3, 3],
- [3, 3],
- [4, 1],
- [4, 1],
- [4, 1],
- [4, 1],
- ],
- dtype=np.dtype("float"),
- )
- y = np.array(
- [1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=np.dtype("int")
- )
- X2 = np.vstack([X, X])
- y2 = np.hstack([y, 3 - y])
- sample_weight = np.ones(shape=len(y) * 2)
- sample_weight[len(y) :] = 0
- X2, y2, sample_weight = shuffle(X2, y2, sample_weight, random_state=0)
- base_clf = LogisticRegression(solver="liblinear", random_state=42)
- base_clf.set_params(**params)
- clf_no_weight = clone(base_clf).fit(X, y)
- clf_with_weight = clone(base_clf).fit(X2, y2, sample_weight=sample_weight)
- for method in ("predict", "predict_proba", "decision_function"):
- X_clf_no_weight = getattr(clf_no_weight, method)(X)
- X_clf_with_weight = getattr(clf_with_weight, method)(X)
- assert_allclose(X_clf_no_weight, X_clf_with_weight)
- def test_scores_attribute_layout_elasticnet():
- # Non regression test for issue #14955.
- # when penalty is elastic net the scores_ attribute has shape
- # (n_classes, n_Cs, n_l1_ratios)
- # We here make sure that the second dimension indeed corresponds to Cs and
- # the third dimension corresponds to l1_ratios.
- X, y = make_classification(n_samples=1000, random_state=0)
- cv = StratifiedKFold(n_splits=5)
- l1_ratios = [0.1, 0.9]
- Cs = [0.1, 1, 10]
- lrcv = LogisticRegressionCV(
- penalty="elasticnet",
- solver="saga",
- l1_ratios=l1_ratios,
- Cs=Cs,
- cv=cv,
- random_state=0,
- max_iter=250,
- tol=1e-3,
- )
- lrcv.fit(X, y)
- avg_scores_lrcv = lrcv.scores_[1].mean(axis=0) # average over folds
- for i, C in enumerate(Cs):
- for j, l1_ratio in enumerate(l1_ratios):
- lr = LogisticRegression(
- penalty="elasticnet",
- solver="saga",
- C=C,
- l1_ratio=l1_ratio,
- random_state=0,
- max_iter=250,
- tol=1e-3,
- )
- avg_score_lr = cross_val_score(lr, X, y, cv=cv).mean()
- assert avg_scores_lrcv[i, j] == pytest.approx(avg_score_lr)
- @pytest.mark.parametrize("fit_intercept", [False, True])
- def test_multinomial_identifiability_on_iris(fit_intercept):
- """Test that the multinomial classification is identifiable.
- A multinomial with c classes can be modeled with
- probability_k = exp(X@coef_k) / sum(exp(X@coef_l), l=1..c) for k=1..c.
- This is not identifiable, unless one chooses a further constraint.
- According to [1], the maximum of the L2 penalized likelihood automatically
- satisfies the symmetric constraint:
- sum(coef_k, k=1..c) = 0
- Further details can be found in [2].
- Reference
- ---------
- .. [1] :doi:`Zhu, Ji and Trevor J. Hastie. "Classification of gene microarrays by
- penalized logistic regression". Biostatistics 5 3 (2004): 427-43.
- <10.1093/biostatistics/kxg046>`
- .. [2] :arxiv:`Noah Simon and Jerome Friedman and Trevor Hastie. (2013)
- "A Blockwise Descent Algorithm for Group-penalized Multiresponse and
- Multinomial Regression". <1311.6529>`
- """
- # Test logistic regression with the iris dataset
- n_samples, n_features = iris.data.shape
- target = iris.target_names[iris.target]
- clf = LogisticRegression(
- C=len(iris.data),
- solver="lbfgs",
- multi_class="multinomial",
- fit_intercept=fit_intercept,
- )
- # Scaling X to ease convergence.
- X_scaled = scale(iris.data)
- clf.fit(X_scaled, target)
- # axis=0 is sum over classes
- assert_allclose(clf.coef_.sum(axis=0), 0, atol=1e-10)
- if fit_intercept:
- clf.intercept_.sum(axis=0) == pytest.approx(0, abs=1e-15)
- @pytest.mark.parametrize("multi_class", ["ovr", "multinomial", "auto"])
- @pytest.mark.parametrize("class_weight", [{0: 1.0, 1: 10.0, 2: 1.0}, "balanced"])
- def test_sample_weight_not_modified(multi_class, class_weight):
- X, y = load_iris(return_X_y=True)
- n_features = len(X)
- W = np.ones(n_features)
- W[: n_features // 2] = 2
- expected = W.copy()
- clf = LogisticRegression(
- random_state=0, class_weight=class_weight, max_iter=200, multi_class=multi_class
- )
- clf.fit(X, y, sample_weight=W)
- assert_allclose(expected, W)
- @pytest.mark.parametrize("solver", SOLVERS)
- def test_large_sparse_matrix(solver, global_random_seed):
- # Solvers either accept large sparse matrices, or raise helpful error.
- # Non-regression test for pull-request #21093.
- # generate sparse matrix with int64 indices
- X = sparse.rand(20, 10, format="csr", random_state=global_random_seed)
- for attr in ["indices", "indptr"]:
- setattr(X, attr, getattr(X, attr).astype("int64"))
- rng = np.random.RandomState(global_random_seed)
- y = rng.randint(2, size=X.shape[0])
- if solver in ["liblinear", "sag", "saga"]:
- msg = "Only sparse matrices with 32-bit integer indices"
- with pytest.raises(ValueError, match=msg):
- LogisticRegression(solver=solver).fit(X, y)
- else:
- LogisticRegression(solver=solver).fit(X, y)
- def test_single_feature_newton_cg():
- # Test that Newton-CG works with a single feature and intercept.
- # Non-regression test for issue #23605.
- X = np.array([[0.5, 0.65, 1.1, 1.25, 0.8, 0.54, 0.95, 0.7]]).T
- y = np.array([1, 1, 0, 0, 1, 1, 0, 1])
- assert X.shape[1] == 1
- LogisticRegression(solver="newton-cg", fit_intercept=True).fit(X, y)
- # TODO(1.4): Remove
- def test_warning_on_penalty_string_none():
- # Test that warning message is shown when penalty='none'
- target = iris.target_names[iris.target]
- lr = LogisticRegression(penalty="none")
- warning_message = (
- "`penalty='none'`has been deprecated in 1.2 and will be removed in 1.4."
- " To keep the past behaviour, set `penalty=None`."
- )
- with pytest.warns(FutureWarning, match=warning_message):
- lr.fit(iris.data, target)
- def test_liblinear_not_stuck():
- # Non-regression https://github.com/scikit-learn/scikit-learn/issues/18264
- X = iris.data.copy()
- y = iris.target.copy()
- X = X[y != 2]
- y = y[y != 2]
- X_prep = StandardScaler().fit_transform(X)
- C = l1_min_c(X, y, loss="log") * 10 ** (10 / 29)
- clf = LogisticRegression(
- penalty="l1",
- solver="liblinear",
- tol=1e-6,
- max_iter=100,
- intercept_scaling=10000.0,
- random_state=0,
- C=C,
- )
- # test that the fit does not raise a ConvergenceWarning
- with warnings.catch_warnings():
- warnings.simplefilter("error", ConvergenceWarning)
- clf.fit(X_prep, y)
- @pytest.mark.parametrize("solver", SOLVERS)
- def test_zero_max_iter(solver):
- # Make sure we can inspect the state of LogisticRegression right after
- # initialization (before the first weight update).
- X, y = load_iris(return_X_y=True)
- y = y == 2
- with ignore_warnings(category=ConvergenceWarning):
- clf = LogisticRegression(solver=solver, max_iter=0).fit(X, y)
- if solver not in ["saga", "sag"]:
- # XXX: sag and saga have n_iter_ = [1]...
- assert clf.n_iter_ == 0
- if solver != "lbfgs":
- # XXX: lbfgs has already started to update the coefficients...
- assert_allclose(clf.coef_, np.zeros_like(clf.coef_))
- assert_allclose(
- clf.decision_function(X),
- np.full(shape=X.shape[0], fill_value=clf.intercept_),
- )
- assert_allclose(
- clf.predict_proba(X),
- np.full(shape=(X.shape[0], 2), fill_value=0.5),
- )
- assert clf.score(X, y) < 0.7
|