| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- # Authors: David Dale <dale.david@mail.ru>
- # Christian Lorentzen <lorentzen.ch@gmail.com>
- # License: BSD 3 clause
- import numpy as np
- import pytest
- from pytest import approx
- from scipy import sparse
- from scipy.optimize import minimize
- from sklearn.datasets import make_regression
- from sklearn.exceptions import ConvergenceWarning
- from sklearn.linear_model import HuberRegressor, QuantileRegressor
- from sklearn.metrics import mean_pinball_loss
- from sklearn.utils._testing import assert_allclose, skip_if_32bit
- from sklearn.utils.fixes import parse_version, sp_version
- @pytest.fixture
- def X_y_data():
- X, y = make_regression(n_samples=10, n_features=1, random_state=0, noise=1)
- return X, y
- @pytest.fixture
- def default_solver():
- return "highs" if sp_version >= parse_version("1.6.0") else "interior-point"
- @pytest.mark.skipif(
- parse_version(sp_version.base_version) >= parse_version("1.11"),
- reason="interior-point solver is not available in SciPy 1.11",
- )
- @pytest.mark.parametrize("solver", ["interior-point", "revised simplex"])
- def test_incompatible_solver_for_sparse_input(X_y_data, solver):
- X, y = X_y_data
- X_sparse = sparse.csc_matrix(X)
- err_msg = (
- f"Solver {solver} does not support sparse X. Use solver 'highs' for example."
- )
- with pytest.raises(ValueError, match=err_msg):
- QuantileRegressor(solver=solver).fit(X_sparse, y)
- @pytest.mark.parametrize("solver", ("highs-ds", "highs-ipm", "highs"))
- @pytest.mark.skipif(
- sp_version >= parse_version("1.6.0"),
- reason="Solvers are available as of scipy 1.6.0",
- )
- def test_too_new_solver_methods_raise_error(X_y_data, solver):
- """Test that highs solver raises for scipy<1.6.0."""
- X, y = X_y_data
- with pytest.raises(ValueError, match="scipy>=1.6.0"):
- QuantileRegressor(solver=solver).fit(X, y)
- @pytest.mark.parametrize(
- "quantile, alpha, intercept, coef",
- [
- # for 50% quantile w/o regularization, any slope in [1, 10] is okay
- [0.5, 0, 1, None],
- # if positive error costs more, the slope is maximal
- [0.51, 0, 1, 10],
- # if negative error costs more, the slope is minimal
- [0.49, 0, 1, 1],
- # for a small lasso penalty, the slope is also minimal
- [0.5, 0.01, 1, 1],
- # for a large lasso penalty, the model predicts the constant median
- [0.5, 100, 2, 0],
- ],
- )
- def test_quantile_toy_example(quantile, alpha, intercept, coef, default_solver):
- # test how different parameters affect a small intuitive example
- X = [[0], [1], [1]]
- y = [1, 2, 11]
- model = QuantileRegressor(
- quantile=quantile, alpha=alpha, solver=default_solver
- ).fit(X, y)
- assert_allclose(model.intercept_, intercept, atol=1e-2)
- if coef is not None:
- assert_allclose(model.coef_[0], coef, atol=1e-2)
- if alpha < 100:
- assert model.coef_[0] >= 1
- assert model.coef_[0] <= 10
- @pytest.mark.parametrize("fit_intercept", [True, False])
- def test_quantile_equals_huber_for_low_epsilon(fit_intercept, default_solver):
- X, y = make_regression(n_samples=100, n_features=20, random_state=0, noise=1.0)
- alpha = 1e-4
- huber = HuberRegressor(
- epsilon=1 + 1e-4, alpha=alpha, fit_intercept=fit_intercept
- ).fit(X, y)
- quant = QuantileRegressor(
- alpha=alpha, fit_intercept=fit_intercept, solver=default_solver
- ).fit(X, y)
- assert_allclose(huber.coef_, quant.coef_, atol=1e-1)
- if fit_intercept:
- assert huber.intercept_ == approx(quant.intercept_, abs=1e-1)
- # check that we still predict fraction
- assert np.mean(y < quant.predict(X)) == approx(0.5, abs=1e-1)
- @pytest.mark.parametrize("q", [0.5, 0.9, 0.05])
- def test_quantile_estimates_calibration(q, default_solver):
- # Test that model estimates percentage of points below the prediction
- X, y = make_regression(n_samples=1000, n_features=20, random_state=0, noise=1.0)
- quant = QuantileRegressor(
- quantile=q,
- alpha=0,
- solver=default_solver,
- ).fit(X, y)
- assert np.mean(y < quant.predict(X)) == approx(q, abs=1e-2)
- def test_quantile_sample_weight(default_solver):
- # test that with unequal sample weights we still estimate weighted fraction
- n = 1000
- X, y = make_regression(n_samples=n, n_features=5, random_state=0, noise=10.0)
- weight = np.ones(n)
- # when we increase weight of upper observations,
- # estimate of quantile should go up
- weight[y > y.mean()] = 100
- quant = QuantileRegressor(quantile=0.5, alpha=1e-8, solver=default_solver)
- quant.fit(X, y, sample_weight=weight)
- fraction_below = np.mean(y < quant.predict(X))
- assert fraction_below > 0.5
- weighted_fraction_below = np.average(y < quant.predict(X), weights=weight)
- assert weighted_fraction_below == approx(0.5, abs=3e-2)
- @pytest.mark.skipif(
- sp_version < parse_version("1.6.0"),
- reason="The `highs` solver is available from the 1.6.0 scipy version",
- )
- @pytest.mark.parametrize("quantile", [0.2, 0.5, 0.8])
- def test_asymmetric_error(quantile, default_solver):
- """Test quantile regression for asymmetric distributed targets."""
- n_samples = 1000
- rng = np.random.RandomState(42)
- X = np.concatenate(
- (
- np.abs(rng.randn(n_samples)[:, None]),
- -rng.randint(2, size=(n_samples, 1)),
- ),
- axis=1,
- )
- intercept = 1.23
- coef = np.array([0.5, -2])
- # Take care that X @ coef + intercept > 0
- assert np.min(X @ coef + intercept) > 0
- # For an exponential distribution with rate lambda, e.g. exp(-lambda * x),
- # the quantile at level q is:
- # quantile(q) = - log(1 - q) / lambda
- # scale = 1/lambda = -quantile(q) / log(1 - q)
- y = rng.exponential(
- scale=-(X @ coef + intercept) / np.log(1 - quantile), size=n_samples
- )
- model = QuantileRegressor(
- quantile=quantile,
- alpha=0,
- solver=default_solver,
- ).fit(X, y)
- # This test can be made to pass with any solver but in the interest
- # of sparing continuous integration resources, the test is performed
- # with the fastest solver only.
- assert model.intercept_ == approx(intercept, rel=0.2)
- assert_allclose(model.coef_, coef, rtol=0.6)
- assert_allclose(np.mean(model.predict(X) > y), quantile, atol=1e-2)
- # Now compare to Nelder-Mead optimization with L1 penalty
- alpha = 0.01
- model.set_params(alpha=alpha).fit(X, y)
- model_coef = np.r_[model.intercept_, model.coef_]
- def func(coef):
- loss = mean_pinball_loss(y, X @ coef[1:] + coef[0], alpha=quantile)
- L1 = np.sum(np.abs(coef[1:]))
- return loss + alpha * L1
- res = minimize(
- fun=func,
- x0=[1, 0, -1],
- method="Nelder-Mead",
- tol=1e-12,
- options={"maxiter": 2000},
- )
- assert func(model_coef) == approx(func(res.x))
- assert_allclose(model.intercept_, res.x[0])
- assert_allclose(model.coef_, res.x[1:])
- assert_allclose(np.mean(model.predict(X) > y), quantile, atol=1e-2)
- @pytest.mark.parametrize("quantile", [0.2, 0.5, 0.8])
- def test_equivariance(quantile, default_solver):
- """Test equivariace of quantile regression.
- See Koenker (2005) Quantile Regression, Chapter 2.2.3.
- """
- rng = np.random.RandomState(42)
- n_samples, n_features = 100, 5
- X, y = make_regression(
- n_samples=n_samples,
- n_features=n_features,
- n_informative=n_features,
- noise=0,
- random_state=rng,
- shuffle=False,
- )
- # make y asymmetric
- y += rng.exponential(scale=100, size=y.shape)
- params = dict(alpha=0, solver=default_solver)
- model1 = QuantileRegressor(quantile=quantile, **params).fit(X, y)
- # coef(q; a*y, X) = a * coef(q; y, X)
- a = 2.5
- model2 = QuantileRegressor(quantile=quantile, **params).fit(X, a * y)
- assert model2.intercept_ == approx(a * model1.intercept_, rel=1e-5)
- assert_allclose(model2.coef_, a * model1.coef_, rtol=1e-5)
- # coef(1-q; -a*y, X) = -a * coef(q; y, X)
- model2 = QuantileRegressor(quantile=1 - quantile, **params).fit(X, -a * y)
- assert model2.intercept_ == approx(-a * model1.intercept_, rel=1e-5)
- assert_allclose(model2.coef_, -a * model1.coef_, rtol=1e-5)
- # coef(q; y + X @ g, X) = coef(q; y, X) + g
- g_intercept, g_coef = rng.randn(), rng.randn(n_features)
- model2 = QuantileRegressor(quantile=quantile, **params)
- model2.fit(X, y + X @ g_coef + g_intercept)
- assert model2.intercept_ == approx(model1.intercept_ + g_intercept)
- assert_allclose(model2.coef_, model1.coef_ + g_coef, rtol=1e-6)
- # coef(q; y, X @ A) = A^-1 @ coef(q; y, X)
- A = rng.randn(n_features, n_features)
- model2 = QuantileRegressor(quantile=quantile, **params)
- model2.fit(X @ A, y)
- assert model2.intercept_ == approx(model1.intercept_, rel=1e-5)
- assert_allclose(model2.coef_, np.linalg.solve(A, model1.coef_), rtol=1e-5)
- @pytest.mark.skipif(
- parse_version(sp_version.base_version) >= parse_version("1.11"),
- reason="interior-point solver is not available in SciPy 1.11",
- )
- @pytest.mark.filterwarnings("ignore:`method='interior-point'` is deprecated")
- def test_linprog_failure():
- """Test that linprog fails."""
- X = np.linspace(0, 10, num=10).reshape(-1, 1)
- y = np.linspace(0, 10, num=10)
- reg = QuantileRegressor(
- alpha=0, solver="interior-point", solver_options={"maxiter": 1}
- )
- msg = "Linear programming for QuantileRegressor did not succeed."
- with pytest.warns(ConvergenceWarning, match=msg):
- reg.fit(X, y)
- @skip_if_32bit
- @pytest.mark.skipif(
- sp_version <= parse_version("1.6.0"),
- reason="Solvers are available as of scipy 1.6.0",
- )
- @pytest.mark.parametrize(
- "sparse_format", [sparse.csc_matrix, sparse.csr_matrix, sparse.coo_matrix]
- )
- @pytest.mark.parametrize("solver", ["highs", "highs-ds", "highs-ipm"])
- @pytest.mark.parametrize("fit_intercept", [True, False])
- def test_sparse_input(sparse_format, solver, fit_intercept, default_solver):
- """Test that sparse and dense X give same results."""
- X, y = make_regression(n_samples=100, n_features=20, random_state=1, noise=1.0)
- X_sparse = sparse_format(X)
- alpha = 1e-4
- quant_dense = QuantileRegressor(
- alpha=alpha, fit_intercept=fit_intercept, solver=default_solver
- ).fit(X, y)
- quant_sparse = QuantileRegressor(
- alpha=alpha, fit_intercept=fit_intercept, solver=solver
- ).fit(X_sparse, y)
- assert_allclose(quant_sparse.coef_, quant_dense.coef_, rtol=1e-2)
- if fit_intercept:
- assert quant_sparse.intercept_ == approx(quant_dense.intercept_)
- # check that we still predict fraction
- assert 0.45 <= np.mean(y < quant_sparse.predict(X_sparse)) <= 0.57
- # TODO (1.4): remove this test in 1.4
- @pytest.mark.skipif(
- parse_version(sp_version.base_version) >= parse_version("1.11"),
- reason="interior-point solver is not available in SciPy 1.11",
- )
- def test_warning_new_default(X_y_data):
- """Check that we warn about the new default solver."""
- X, y = X_y_data
- model = QuantileRegressor()
- with pytest.warns(FutureWarning, match="The default solver will change"):
- model.fit(X, y)
- def test_error_interior_point_future(X_y_data, monkeypatch):
- """Check that we will raise a proper error when requesting
- `solver='interior-point'` in SciPy >= 1.11.
- """
- X, y = X_y_data
- import sklearn.linear_model._quantile
- with monkeypatch.context() as m:
- m.setattr(sklearn.linear_model._quantile, "sp_version", parse_version("1.11.0"))
- err_msg = "Solver interior-point is not anymore available in SciPy >= 1.11.0."
- with pytest.raises(ValueError, match=err_msg):
- QuantileRegressor(solver="interior-point").fit(X, y)
|