| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568 |
- import numpy as np
- import pytest
- from numpy.testing import assert_allclose, assert_array_equal
- from sklearn.ensemble import RandomForestRegressor
- from sklearn.linear_model import Ridge
- from sklearn.model_selection import (
- KFold,
- ShuffleSplit,
- StratifiedKFold,
- cross_val_score,
- train_test_split,
- )
- from sklearn.pipeline import make_pipeline
- from sklearn.preprocessing import (
- KBinsDiscretizer,
- LabelEncoder,
- TargetEncoder,
- )
- def _encode_target(X_ordinal, y_int, n_categories, smooth):
- """Simple Python implementation of target encoding."""
- cur_encodings = np.zeros(n_categories, dtype=np.float64)
- y_mean = np.mean(y_int)
- if smooth == "auto":
- y_variance = np.var(y_int)
- for c in range(n_categories):
- y_subset = y_int[X_ordinal == c]
- n_i = y_subset.shape[0]
- if n_i == 0:
- cur_encodings[c] = y_mean
- continue
- y_subset_variance = np.var(y_subset)
- m = y_subset_variance / y_variance
- lambda_ = n_i / (n_i + m)
- cur_encodings[c] = lambda_ * np.mean(y_subset) + (1 - lambda_) * y_mean
- return cur_encodings
- else: # float
- for c in range(n_categories):
- y_subset = y_int[X_ordinal == c]
- current_sum = np.sum(y_subset) + y_mean * smooth
- current_cnt = y_subset.shape[0] + smooth
- cur_encodings[c] = current_sum / current_cnt
- return cur_encodings
- @pytest.mark.parametrize(
- "categories, unknown_value",
- [
- ([np.array([0, 1, 2], dtype=np.int64)], 4),
- ([np.array([1.0, 3.0, np.nan], dtype=np.float64)], 6.0),
- ([np.array(["cat", "dog", "snake"], dtype=object)], "bear"),
- ("auto", 3),
- ],
- )
- @pytest.mark.parametrize("smooth", [5.0, "auto"])
- @pytest.mark.parametrize("target_type", ["binary", "continuous"])
- def test_encoding(categories, unknown_value, global_random_seed, smooth, target_type):
- """Check encoding for binary and continuous targets.
- Compare the values returned by `TargetEncoder.fit_transform` against the
- expected encodings for cv splits from a naive reference Python
- implementation in _encode_target.
- """
- n_categories = 3
- X_train_int_array = np.array([[0] * 20 + [1] * 30 + [2] * 40], dtype=np.int64).T
- X_test_int_array = np.array([[0, 1, 2]], dtype=np.int64).T
- n_samples = X_train_int_array.shape[0]
- if categories == "auto":
- X_train = X_train_int_array
- X_test = X_test_int_array
- else:
- X_train = categories[0][X_train_int_array]
- X_test = categories[0][X_test_int_array]
- X_test = np.concatenate((X_test, [[unknown_value]]))
- data_rng = np.random.RandomState(global_random_seed)
- n_splits = 3
- if target_type == "binary":
- y_int = data_rng.randint(low=0, high=2, size=n_samples)
- target_names = np.array(["cat", "dog"], dtype=object)
- y_train = target_names[y_int]
- else: # target_type == continuous
- y_int = data_rng.uniform(low=-10, high=20, size=n_samples)
- y_train = y_int
- shuffled_idx = data_rng.permutation(n_samples)
- X_train_int_array = X_train_int_array[shuffled_idx]
- X_train = X_train[shuffled_idx]
- y_train = y_train[shuffled_idx]
- y_int = y_int[shuffled_idx]
- # Define our CV splitting strategy
- if target_type == "binary":
- cv = StratifiedKFold(
- n_splits=n_splits, random_state=global_random_seed, shuffle=True
- )
- else:
- cv = KFold(n_splits=n_splits, random_state=global_random_seed, shuffle=True)
- # Compute the expected values using our reference Python implementation of
- # target encoding:
- expected_X_fit_transform = np.empty_like(X_train_int_array, dtype=np.float64)
- for train_idx, test_idx in cv.split(X_train_int_array, y_train):
- X_, y_ = X_train_int_array[train_idx, 0], y_int[train_idx]
- cur_encodings = _encode_target(X_, y_, n_categories, smooth)
- expected_X_fit_transform[test_idx, 0] = cur_encodings[
- X_train_int_array[test_idx, 0]
- ]
- # Check that we can obtain the same encodings by calling `fit_transform` on
- # the estimator with the same CV parameters:
- target_encoder = TargetEncoder(
- smooth=smooth,
- categories=categories,
- cv=n_splits,
- random_state=global_random_seed,
- )
- X_fit_transform = target_encoder.fit_transform(X_train, y_train)
- assert target_encoder.target_type_ == target_type
- assert_allclose(X_fit_transform, expected_X_fit_transform)
- assert len(target_encoder.encodings_) == 1
- # compute encodings for all data to validate `transform`
- y_mean = np.mean(y_int)
- expected_encodings = _encode_target(
- X_train_int_array[:, 0], y_int, n_categories, smooth
- )
- assert_allclose(target_encoder.encodings_[0], expected_encodings)
- assert target_encoder.target_mean_ == pytest.approx(y_mean)
- # Transform on test data, the last value is unknown so it is encoded as the target
- # mean
- expected_X_test_transform = np.concatenate(
- (expected_encodings, np.array([y_mean]))
- ).reshape(-1, 1)
- X_test_transform = target_encoder.transform(X_test)
- assert_allclose(X_test_transform, expected_X_test_transform)
- @pytest.mark.parametrize(
- "X, categories",
- [
- (
- np.array([[0] * 10 + [1] * 10 + [3]], dtype=np.int64).T, # 3 is unknown
- [[0, 1, 2]],
- ),
- (
- np.array(
- [["cat"] * 10 + ["dog"] * 10 + ["snake"]], dtype=object
- ).T, # snake is unknown
- [["dog", "cat", "cow"]],
- ),
- ],
- )
- @pytest.mark.parametrize("smooth", [4.0, "auto"])
- def test_custom_categories(X, categories, smooth):
- """Custom categories with unknown categories that are not in training data."""
- rng = np.random.RandomState(0)
- y = rng.uniform(low=-10, high=20, size=X.shape[0])
- enc = TargetEncoder(categories=categories, smooth=smooth, random_state=0).fit(X, y)
- # The last element is unknown and encoded as the mean
- y_mean = y.mean()
- X_trans = enc.transform(X[-1:])
- assert X_trans[0, 0] == pytest.approx(y_mean)
- assert len(enc.encodings_) == 1
- # custom category that is not in training data
- assert enc.encodings_[0][-1] == pytest.approx(y_mean)
- @pytest.mark.parametrize(
- "y, msg",
- [
- ([1, 2, 0, 1], "Found input variables with inconsistent"),
- (
- np.array([[1, 2, 0], [1, 2, 3]]).T,
- "Target type was inferred to be 'multiclass-multioutput'",
- ),
- (["cat", "dog", "bear"], "Target type was inferred to be 'multiclass'"),
- ],
- )
- def test_errors(y, msg):
- """Check invalidate input."""
- X = np.array([[1, 0, 1]]).T
- enc = TargetEncoder()
- with pytest.raises(ValueError, match=msg):
- enc.fit_transform(X, y)
- def test_use_regression_target():
- """Custom target_type to avoid inferring the target type."""
- X = np.array([[0, 1, 0, 1, 0, 1]]).T
- # XXX: When multiclass is supported, then the following `y`
- # is considered a multiclass problem and `TargetEncoder` will not error.
- # type_of_target would be 'multiclass'
- y = np.array([1.0, 2.0, 3.0, 2.0, 3.0, 4.0])
- enc = TargetEncoder()
- msg = "Target type was inferred to be 'multiclass'"
- with pytest.raises(ValueError, match=msg):
- enc.fit_transform(X, y)
- enc = TargetEncoder(target_type="continuous")
- enc.fit_transform(X, y)
- assert enc.target_type_ == "continuous"
- def test_feature_names_out_set_output():
- """Check TargetEncoder works with set_output."""
- pd = pytest.importorskip("pandas")
- X_df = pd.DataFrame({"A": ["a", "b"] * 10, "B": [1, 2] * 10})
- y = [1, 2] * 10
- enc_default = TargetEncoder(cv=2, smooth=3.0, random_state=0)
- enc_default.set_output(transform="default")
- enc_pandas = TargetEncoder(cv=2, smooth=3.0, random_state=0)
- enc_pandas.set_output(transform="pandas")
- X_default = enc_default.fit_transform(X_df, y)
- X_pandas = enc_pandas.fit_transform(X_df, y)
- assert_allclose(X_pandas.to_numpy(), X_default)
- assert_array_equal(enc_pandas.get_feature_names_out(), ["A", "B"])
- assert_array_equal(enc_pandas.get_feature_names_out(), X_pandas.columns)
- @pytest.mark.parametrize("to_pandas", [True, False])
- @pytest.mark.parametrize("smooth", [1.0, "auto"])
- @pytest.mark.parametrize("target_type", ["binary-ints", "binary-str", "continuous"])
- def test_multiple_features_quick(to_pandas, smooth, target_type):
- """Check target encoder with multiple features."""
- X_ordinal = np.array(
- [[1, 1], [0, 1], [1, 1], [2, 1], [1, 0], [0, 1], [1, 0], [0, 0]], dtype=np.int64
- )
- if target_type == "binary-str":
- y_train = np.array(["a", "b", "a", "a", "b", "b", "a", "b"])
- y_integer = LabelEncoder().fit_transform(y_train)
- cv = StratifiedKFold(2, random_state=0, shuffle=True)
- elif target_type == "binary-ints":
- y_train = np.array([3, 4, 3, 3, 3, 4, 4, 4])
- y_integer = LabelEncoder().fit_transform(y_train)
- cv = StratifiedKFold(2, random_state=0, shuffle=True)
- else:
- y_train = np.array([3.0, 5.1, 2.4, 3.5, 4.1, 5.5, 10.3, 7.3], dtype=np.float32)
- y_integer = y_train
- cv = KFold(2, random_state=0, shuffle=True)
- y_mean = np.mean(y_integer)
- categories = [[0, 1, 2], [0, 1]]
- X_test = np.array(
- [
- [0, 1],
- [3, 0], # 3 is unknown
- [1, 10], # 10 is unknown
- ],
- dtype=np.int64,
- )
- if to_pandas:
- pd = pytest.importorskip("pandas")
- # convert second feature to an object
- X_train = pd.DataFrame(
- {
- "feat0": X_ordinal[:, 0],
- "feat1": np.array(["cat", "dog"], dtype=object)[X_ordinal[:, 1]],
- }
- )
- # "snake" is unknown
- X_test = pd.DataFrame({"feat0": X_test[:, 0], "feat1": ["dog", "cat", "snake"]})
- else:
- X_train = X_ordinal
- # manually compute encoding for fit_transform
- expected_X_fit_transform = np.empty_like(X_ordinal, dtype=np.float64)
- for f_idx, cats in enumerate(categories):
- for train_idx, test_idx in cv.split(X_ordinal, y_integer):
- X_, y_ = X_ordinal[train_idx, f_idx], y_integer[train_idx]
- current_encoding = _encode_target(X_, y_, len(cats), smooth)
- expected_X_fit_transform[test_idx, f_idx] = current_encoding[
- X_ordinal[test_idx, f_idx]
- ]
- # manually compute encoding for transform
- expected_encodings = []
- for f_idx, cats in enumerate(categories):
- current_encoding = _encode_target(
- X_ordinal[:, f_idx], y_integer, len(cats), smooth
- )
- expected_encodings.append(current_encoding)
- expected_X_test_transform = np.array(
- [
- [expected_encodings[0][0], expected_encodings[1][1]],
- [y_mean, expected_encodings[1][0]],
- [expected_encodings[0][1], y_mean],
- ],
- dtype=np.float64,
- )
- enc = TargetEncoder(smooth=smooth, cv=2, random_state=0)
- X_fit_transform = enc.fit_transform(X_train, y_train)
- assert_allclose(X_fit_transform, expected_X_fit_transform)
- assert len(enc.encodings_) == 2
- for i in range(2):
- assert_allclose(enc.encodings_[i], expected_encodings[i])
- X_test_transform = enc.transform(X_test)
- assert_allclose(X_test_transform, expected_X_test_transform)
- @pytest.mark.parametrize(
- "y, y_mean",
- [
- (np.array([3.4] * 20), 3.4),
- (np.array([0] * 20), 0),
- (np.array(["a"] * 20, dtype=object), 0),
- ],
- ids=["continuous", "binary", "binary-string"],
- )
- @pytest.mark.parametrize("smooth", ["auto", 4.0, 0.0])
- def test_constant_target_and_feature(y, y_mean, smooth):
- """Check edge case where feature and target is constant."""
- X = np.array([[1] * 20]).T
- n_samples = X.shape[0]
- enc = TargetEncoder(cv=2, smooth=smooth, random_state=0)
- X_trans = enc.fit_transform(X, y)
- assert_allclose(X_trans, np.repeat([[y_mean]], n_samples, axis=0))
- assert enc.encodings_[0][0] == pytest.approx(y_mean)
- assert enc.target_mean_ == pytest.approx(y_mean)
- X_test = np.array([[1], [0]])
- X_test_trans = enc.transform(X_test)
- assert_allclose(X_test_trans, np.repeat([[y_mean]], 2, axis=0))
- def test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not(
- global_random_seed,
- ):
- cardinality = 30 # not too large, otherwise we need a very large n_samples
- n_samples = 3000
- rng = np.random.RandomState(global_random_seed)
- y_train = rng.normal(size=n_samples)
- X_train = rng.randint(0, cardinality, size=n_samples).reshape(-1, 1)
- # Sort by y_train to attempt to cause a leak
- y_sorted_indices = y_train.argsort()
- y_train = y_train[y_sorted_indices]
- X_train = X_train[y_sorted_indices]
- target_encoder = TargetEncoder(shuffle=True, random_state=global_random_seed)
- X_encoded_train_shuffled = target_encoder.fit_transform(X_train, y_train)
- target_encoder = TargetEncoder(shuffle=False)
- X_encoded_train_no_shuffled = target_encoder.fit_transform(X_train, y_train)
- # Check that no information about y_train has leaked into X_train:
- regressor = RandomForestRegressor(
- n_estimators=10, min_samples_leaf=20, random_state=global_random_seed
- )
- # It's impossible to learn a good predictive model on the training set when
- # using the original representation X_train or the target encoded
- # representation with shuffled inner CV. For the latter, no information
- # about y_train has inadvertently leaked into the prior used to generate
- # `X_encoded_train_shuffled`:
- cv = ShuffleSplit(n_splits=50, random_state=global_random_seed)
- assert cross_val_score(regressor, X_train, y_train, cv=cv).mean() < 0.1
- assert (
- cross_val_score(regressor, X_encoded_train_shuffled, y_train, cv=cv).mean()
- < 0.1
- )
- # Without the inner CV shuffling, a lot of information about y_train goes into the
- # the per-fold y_train.mean() priors: shrinkage is no longer effective in this
- # case and would no longer be able to prevent downstream over-fitting.
- assert (
- cross_val_score(regressor, X_encoded_train_no_shuffled, y_train, cv=cv).mean()
- > 0.5
- )
- def test_smooth_zero():
- """Check edge case with zero smoothing and cv does not contain category."""
- X = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]).T
- y = np.array([2.1, 4.3, 1.2, 3.1, 1.0, 9.0, 10.3, 14.2, 13.3, 15.0])
- enc = TargetEncoder(smooth=0.0, shuffle=False, cv=2)
- X_trans = enc.fit_transform(X, y)
- # With cv = 2, category 0 does not exist in the second half, thus
- # it will be encoded as the mean of the second half
- assert_allclose(X_trans[0], np.mean(y[5:]))
- # category 1 does not exist in the first half, thus it will be encoded as
- # the mean of the first half
- assert_allclose(X_trans[-1], np.mean(y[:5]))
- @pytest.mark.parametrize("smooth", [0.0, 1e3, "auto"])
- def test_invariance_of_encoding_under_label_permutation(smooth, global_random_seed):
- # Check that the encoding does not depend on the integer of the value of
- # the integer labels. This is quite a trivial property but it is helpful
- # to understand the following test.
- rng = np.random.RandomState(global_random_seed)
- # Random y and informative categorical X to make the test non-trivial when
- # using smoothing.
- y = rng.normal(size=1000)
- n_categories = 30
- X = KBinsDiscretizer(n_bins=n_categories, encode="ordinal").fit_transform(
- y.reshape(-1, 1)
- )
- X_train, X_test, y_train, y_test = train_test_split(
- X, y, random_state=global_random_seed
- )
- # Shuffle the labels to make sure that the encoding is invariant to the
- # permutation of the labels
- permutated_labels = rng.permutation(n_categories)
- X_train_permuted = permutated_labels[X_train.astype(np.int32)]
- X_test_permuted = permutated_labels[X_test.astype(np.int32)]
- target_encoder = TargetEncoder(smooth=smooth, random_state=global_random_seed)
- X_train_encoded = target_encoder.fit_transform(X_train, y_train)
- X_test_encoded = target_encoder.transform(X_test)
- X_train_permuted_encoded = target_encoder.fit_transform(X_train_permuted, y_train)
- X_test_permuted_encoded = target_encoder.transform(X_test_permuted)
- assert_allclose(X_train_encoded, X_train_permuted_encoded)
- assert_allclose(X_test_encoded, X_test_permuted_encoded)
- # TODO(1.5) remove warning filter when kbd's subsample default is changed
- @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
- @pytest.mark.parametrize("smooth", [0.0, "auto"])
- def test_target_encoding_for_linear_regression(smooth, global_random_seed):
- # Check some expected statistical properties when fitting a linear
- # regression model on target encoded features depending on their relation
- # with that target.
- # In this test, we use the Ridge class with the "lsqr" solver and a little
- # bit of regularization to implement a linear regression model that
- # converges quickly for large `n_samples` and robustly in case of
- # correlated features. Since we will fit this model on a mean centered
- # target, we do not need to fit an intercept and this will help simplify
- # the analysis with respect to the expected coefficients.
- linear_regression = Ridge(alpha=1e-6, solver="lsqr", fit_intercept=False)
- # Construct a random target variable. We need a large number of samples for
- # this test to be stable across all values of the random seed.
- n_samples = 50_000
- rng = np.random.RandomState(global_random_seed)
- y = rng.randn(n_samples)
- # Generate a single informative ordinal feature with medium cardinality.
- # Inject some irreducible noise to make it harder for a multivariate model
- # to identify the informative feature from other pure noise features.
- noise = 0.8 * rng.randn(n_samples)
- n_categories = 100
- X_informative = KBinsDiscretizer(
- n_bins=n_categories,
- encode="ordinal",
- strategy="uniform",
- random_state=rng,
- ).fit_transform((y + noise).reshape(-1, 1))
- # Let's permute the labels to hide the fact that this feature is
- # informative to naive linear regression model trained on the raw ordinal
- # values. As highlighted in the previous test, the target encoding should be
- # invariant to such a permutation.
- permutated_labels = rng.permutation(n_categories)
- X_informative = permutated_labels[X_informative.astype(np.int32)]
- # Generate a shuffled copy of the informative feature to destroy the
- # relationship with the target.
- X_shuffled = rng.permutation(X_informative)
- # Also include a very high cardinality categorical feature that is by
- # itself independent of the target variable: target encoding such a feature
- # without internal cross-validation should cause catastrophic overfitting
- # for the downstream regressor, even with shrinkage. This kind of features
- # typically represents near unique identifiers of samples. In general they
- # should be removed from a machine learning datasets but here we want to
- # study the ability of the default behavior of TargetEncoder to mitigate
- # them automatically.
- X_near_unique_categories = rng.choice(
- int(0.9 * n_samples), size=n_samples, replace=True
- ).reshape(-1, 1)
- # Assemble the dataset and do a train-test split:
- X = np.concatenate(
- [X_informative, X_shuffled, X_near_unique_categories],
- axis=1,
- )
- X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
- # Let's first check that a linear regression model trained on the raw
- # features underfits because of the meaning-less ordinal encoding of the
- # labels.
- raw_model = linear_regression.fit(X_train, y_train)
- assert raw_model.score(X_train, y_train) < 0.1
- assert raw_model.score(X_test, y_test) < 0.1
- # Now do the same with target encoding using the internal CV mechanism
- # implemented when using fit_transform.
- model_with_cv = make_pipeline(
- TargetEncoder(smooth=smooth, random_state=rng), linear_regression
- ).fit(X_train, y_train)
- # This model should be able to fit the data well and also generalise to the
- # test data (assuming that the binning is fine-grained enough). The R2
- # scores are not perfect because of the noise injected during the
- # generation of the unique informative feature.
- coef = model_with_cv[-1].coef_
- assert model_with_cv.score(X_train, y_train) > 0.5, coef
- assert model_with_cv.score(X_test, y_test) > 0.5, coef
- # The target encoder recovers the linear relationship with slope 1 between
- # the target encoded unique informative predictor and the target. Since the
- # target encoding of the 2 other features is not informative thanks to the
- # use of internal cross-validation, the multivariate linear regressor
- # assigns a coef of 1 to the first feature and 0 to the other 2.
- assert coef[0] == pytest.approx(1, abs=1e-2)
- assert (np.abs(coef[1:]) < 0.2).all()
- # Let's now disable the internal cross-validation by calling fit and then
- # transform separately on the training set:
- target_encoder = TargetEncoder(smooth=smooth, random_state=rng).fit(
- X_train, y_train
- )
- X_enc_no_cv_train = target_encoder.transform(X_train)
- X_enc_no_cv_test = target_encoder.transform(X_test)
- model_no_cv = linear_regression.fit(X_enc_no_cv_train, y_train)
- # The linear regression model should always overfit because it assigns
- # too much weight to the extremely high cardinality feature relatively to
- # the informative feature. Note that this is the case even when using
- # the empirical Bayes smoothing which is not enough to prevent such
- # overfitting alone.
- coef = model_no_cv.coef_
- assert model_no_cv.score(X_enc_no_cv_train, y_train) > 0.7, coef
- assert model_no_cv.score(X_enc_no_cv_test, y_test) < 0.5, coef
- # The model overfits because it assigns too much weight to the high
- # cardinality yet non-informative feature instead of the lower
- # cardinality yet informative feature:
- assert abs(coef[0]) < abs(coef[2])
|