| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- from math import ceil
- import numpy as np
- import pytest
- from numpy.testing import assert_array_equal
- from sklearn.datasets import load_iris, make_blobs
- from sklearn.ensemble import StackingClassifier
- from sklearn.exceptions import NotFittedError
- from sklearn.metrics import accuracy_score
- from sklearn.model_selection import train_test_split
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.semi_supervised import SelfTrainingClassifier
- from sklearn.svm import SVC
- # Author: Oliver Rausch <rauscho@ethz.ch>
- # License: BSD 3 clause
- # load the iris dataset and randomly permute it
- iris = load_iris()
- X_train, X_test, y_train, y_test = train_test_split(
- iris.data, iris.target, random_state=0
- )
- n_labeled_samples = 50
- y_train_missing_labels = y_train.copy()
- y_train_missing_labels[n_labeled_samples:] = -1
- mapping = {0: "A", 1: "B", 2: "C", -1: "-1"}
- y_train_missing_strings = np.vectorize(mapping.get)(y_train_missing_labels).astype(
- object
- )
- y_train_missing_strings[y_train_missing_labels == -1] = -1
- def test_warns_k_best():
- st = SelfTrainingClassifier(KNeighborsClassifier(), criterion="k_best", k_best=1000)
- with pytest.warns(UserWarning, match="k_best is larger than"):
- st.fit(X_train, y_train_missing_labels)
- assert st.termination_condition_ == "all_labeled"
- @pytest.mark.parametrize(
- "base_estimator",
- [KNeighborsClassifier(), SVC(gamma="scale", probability=True, random_state=0)],
- )
- @pytest.mark.parametrize("selection_crit", ["threshold", "k_best"])
- def test_classification(base_estimator, selection_crit):
- # Check classification for various parameter settings.
- # Also assert that predictions for strings and numerical labels are equal.
- # Also test for multioutput classification
- threshold = 0.75
- max_iter = 10
- st = SelfTrainingClassifier(
- base_estimator, max_iter=max_iter, threshold=threshold, criterion=selection_crit
- )
- st.fit(X_train, y_train_missing_labels)
- pred = st.predict(X_test)
- proba = st.predict_proba(X_test)
- st_string = SelfTrainingClassifier(
- base_estimator, max_iter=max_iter, criterion=selection_crit, threshold=threshold
- )
- st_string.fit(X_train, y_train_missing_strings)
- pred_string = st_string.predict(X_test)
- proba_string = st_string.predict_proba(X_test)
- assert_array_equal(np.vectorize(mapping.get)(pred), pred_string)
- assert_array_equal(proba, proba_string)
- assert st.termination_condition_ == st_string.termination_condition_
- # Check consistency between labeled_iter, n_iter and max_iter
- labeled = y_train_missing_labels != -1
- # assert that labeled samples have labeled_iter = 0
- assert_array_equal(st.labeled_iter_ == 0, labeled)
- # assert that labeled samples do not change label during training
- assert_array_equal(y_train_missing_labels[labeled], st.transduction_[labeled])
- # assert that the max of the iterations is less than the total amount of
- # iterations
- assert np.max(st.labeled_iter_) <= st.n_iter_ <= max_iter
- assert np.max(st_string.labeled_iter_) <= st_string.n_iter_ <= max_iter
- # check shapes
- assert st.labeled_iter_.shape == st.transduction_.shape
- assert st_string.labeled_iter_.shape == st_string.transduction_.shape
- def test_k_best():
- st = SelfTrainingClassifier(
- KNeighborsClassifier(n_neighbors=1),
- criterion="k_best",
- k_best=10,
- max_iter=None,
- )
- y_train_only_one_label = np.copy(y_train)
- y_train_only_one_label[1:] = -1
- n_samples = y_train.shape[0]
- n_expected_iter = ceil((n_samples - 1) / 10)
- st.fit(X_train, y_train_only_one_label)
- assert st.n_iter_ == n_expected_iter
- # Check labeled_iter_
- assert np.sum(st.labeled_iter_ == 0) == 1
- for i in range(1, n_expected_iter):
- assert np.sum(st.labeled_iter_ == i) == 10
- assert np.sum(st.labeled_iter_ == n_expected_iter) == (n_samples - 1) % 10
- assert st.termination_condition_ == "all_labeled"
- def test_sanity_classification():
- base_estimator = SVC(gamma="scale", probability=True)
- base_estimator.fit(X_train[n_labeled_samples:], y_train[n_labeled_samples:])
- st = SelfTrainingClassifier(base_estimator)
- st.fit(X_train, y_train_missing_labels)
- pred1, pred2 = base_estimator.predict(X_test), st.predict(X_test)
- assert not np.array_equal(pred1, pred2)
- score_supervised = accuracy_score(base_estimator.predict(X_test), y_test)
- score_self_training = accuracy_score(st.predict(X_test), y_test)
- assert score_self_training > score_supervised
- def test_none_iter():
- # Check that the all samples were labeled after a 'reasonable' number of
- # iterations.
- st = SelfTrainingClassifier(KNeighborsClassifier(), threshold=0.55, max_iter=None)
- st.fit(X_train, y_train_missing_labels)
- assert st.n_iter_ < 10
- assert st.termination_condition_ == "all_labeled"
- @pytest.mark.parametrize(
- "base_estimator",
- [KNeighborsClassifier(), SVC(gamma="scale", probability=True, random_state=0)],
- )
- @pytest.mark.parametrize("y", [y_train_missing_labels, y_train_missing_strings])
- def test_zero_iterations(base_estimator, y):
- # Check classification for zero iterations.
- # Fitting a SelfTrainingClassifier with zero iterations should give the
- # same results as fitting a supervised classifier.
- # This also asserts that string arrays work as expected.
- clf1 = SelfTrainingClassifier(base_estimator, max_iter=0)
- clf1.fit(X_train, y)
- clf2 = base_estimator.fit(X_train[:n_labeled_samples], y[:n_labeled_samples])
- assert_array_equal(clf1.predict(X_test), clf2.predict(X_test))
- assert clf1.termination_condition_ == "max_iter"
- def test_prefitted_throws_error():
- # Test that passing a pre-fitted classifier and calling predict throws an
- # error
- knn = KNeighborsClassifier()
- knn.fit(X_train, y_train)
- st = SelfTrainingClassifier(knn)
- with pytest.raises(
- NotFittedError,
- match="This SelfTrainingClassifier instance is not fitted yet",
- ):
- st.predict(X_train)
- @pytest.mark.parametrize("max_iter", range(1, 5))
- def test_labeled_iter(max_iter):
- # Check that the amount of datapoints labeled in iteration 0 is equal to
- # the amount of labeled datapoints we passed.
- st = SelfTrainingClassifier(KNeighborsClassifier(), max_iter=max_iter)
- st.fit(X_train, y_train_missing_labels)
- amount_iter_0 = len(st.labeled_iter_[st.labeled_iter_ == 0])
- assert amount_iter_0 == n_labeled_samples
- # Check that the max of the iterations is less than the total amount of
- # iterations
- assert np.max(st.labeled_iter_) <= st.n_iter_ <= max_iter
- def test_no_unlabeled():
- # Test that training on a fully labeled dataset produces the same results
- # as training the classifier by itself.
- knn = KNeighborsClassifier()
- knn.fit(X_train, y_train)
- st = SelfTrainingClassifier(knn)
- with pytest.warns(UserWarning, match="y contains no unlabeled samples"):
- st.fit(X_train, y_train)
- assert_array_equal(knn.predict(X_test), st.predict(X_test))
- # Assert that all samples were labeled in iteration 0 (since there were no
- # unlabeled samples).
- assert np.all(st.labeled_iter_ == 0)
- assert st.termination_condition_ == "all_labeled"
- def test_early_stopping():
- svc = SVC(gamma="scale", probability=True)
- st = SelfTrainingClassifier(svc)
- X_train_easy = [[1], [0], [1], [0.5]]
- y_train_easy = [1, 0, -1, -1]
- # X = [[0.5]] cannot be predicted on with a high confidence, so training
- # stops early
- st.fit(X_train_easy, y_train_easy)
- assert st.n_iter_ == 1
- assert st.termination_condition_ == "no_change"
- def test_strings_dtype():
- clf = SelfTrainingClassifier(KNeighborsClassifier())
- X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1)
- labels_multiclass = ["one", "two", "three"]
- y_strings = np.take(labels_multiclass, y)
- with pytest.raises(ValueError, match="dtype"):
- clf.fit(X, y_strings)
- @pytest.mark.parametrize("verbose", [True, False])
- def test_verbose(capsys, verbose):
- clf = SelfTrainingClassifier(KNeighborsClassifier(), verbose=verbose)
- clf.fit(X_train, y_train_missing_labels)
- captured = capsys.readouterr()
- if verbose:
- assert "iteration" in captured.out
- else:
- assert "iteration" not in captured.out
- def test_verbose_k_best(capsys):
- st = SelfTrainingClassifier(
- KNeighborsClassifier(n_neighbors=1),
- criterion="k_best",
- k_best=10,
- verbose=True,
- max_iter=None,
- )
- y_train_only_one_label = np.copy(y_train)
- y_train_only_one_label[1:] = -1
- n_samples = y_train.shape[0]
- n_expected_iter = ceil((n_samples - 1) / 10)
- st.fit(X_train, y_train_only_one_label)
- captured = capsys.readouterr()
- msg = "End of iteration {}, added {} new labels."
- for i in range(1, n_expected_iter):
- assert msg.format(i, 10) in captured.out
- assert msg.format(n_expected_iter, (n_samples - 1) % 10) in captured.out
- def test_k_best_selects_best():
- # Tests that the labels added by st really are the 10 best labels.
- svc = SVC(gamma="scale", probability=True, random_state=0)
- st = SelfTrainingClassifier(svc, criterion="k_best", max_iter=1, k_best=10)
- has_label = y_train_missing_labels != -1
- st.fit(X_train, y_train_missing_labels)
- got_label = ~has_label & (st.transduction_ != -1)
- svc.fit(X_train[has_label], y_train_missing_labels[has_label])
- pred = svc.predict_proba(X_train[~has_label])
- max_proba = np.max(pred, axis=1)
- most_confident_svc = X_train[~has_label][np.argsort(max_proba)[-10:]]
- added_by_st = X_train[np.where(got_label)].tolist()
- for row in most_confident_svc.tolist():
- assert row in added_by_st
- def test_base_estimator_meta_estimator():
- # Check that a meta-estimator relying on an estimator implementing
- # `predict_proba` will work even if it does not expose this method before being
- # fitted.
- # Non-regression test for:
- # https://github.com/scikit-learn/scikit-learn/issues/19119
- base_estimator = StackingClassifier(
- estimators=[
- ("svc_1", SVC(probability=True)),
- ("svc_2", SVC(probability=True)),
- ],
- final_estimator=SVC(probability=True),
- cv=2,
- )
- assert hasattr(base_estimator, "predict_proba")
- clf = SelfTrainingClassifier(base_estimator=base_estimator)
- clf.fit(X_train, y_train_missing_labels)
- clf.predict_proba(X_test)
- base_estimator = StackingClassifier(
- estimators=[
- ("svc_1", SVC(probability=False)),
- ("svc_2", SVC(probability=False)),
- ],
- final_estimator=SVC(probability=False),
- cv=2,
- )
- assert not hasattr(base_estimator, "predict_proba")
- clf = SelfTrainingClassifier(base_estimator=base_estimator)
- with pytest.raises(AttributeError):
- clf.fit(X_train, y_train_missing_labels)
- def test_missing_predict_proba():
- # Check that an error is thrown if predict_proba is not implemented
- base_estimator = SVC(probability=False, gamma="scale")
- self_training = SelfTrainingClassifier(base_estimator)
- with pytest.raises(AttributeError, match="predict_proba is not available"):
- self_training.fit(X_train, y_train_missing_labels)
|