| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- # Authors: Gilles Louppe <g.louppe@gmail.com>
- # Peter Prettenhofer <peter.prettenhofer@gmail.com>
- # Brian Holt <bdholt1@gmail.com>
- # Joel Nothman <joel.nothman@gmail.com>
- # Arnaud Joly <arnaud.v.joly@gmail.com>
- # Jacob Schreiber <jmschreiber91@gmail.com>
- # Nelson Liu <nelson@nelsonliu.me>
- #
- # License: BSD 3 clause
- # See _tree.pyx for details.
- import numpy as np
- cimport numpy as cnp
- ctypedef cnp.npy_float32 DTYPE_t # Type of X
- ctypedef cnp.npy_float64 DOUBLE_t # Type of y, sample_weight
- ctypedef cnp.npy_intp SIZE_t # Type for indices and counters
- ctypedef cnp.npy_int32 INT32_t # Signed 32 bit integer
- ctypedef cnp.npy_uint32 UINT32_t # Unsigned 32 bit integer
- from ._splitter cimport Splitter
- from ._splitter cimport SplitRecord
- cdef struct Node:
- # Base storage structure for the nodes in a Tree object
- SIZE_t left_child # id of the left child of the node
- SIZE_t right_child # id of the right child of the node
- SIZE_t feature # Feature used for splitting the node
- DOUBLE_t threshold # Threshold value at the node
- DOUBLE_t impurity # Impurity of the node (i.e., the value of the criterion)
- SIZE_t n_node_samples # Number of samples at the node
- DOUBLE_t weighted_n_node_samples # Weighted number of samples at the node
- unsigned char missing_go_to_left # Whether features have missing values
- cdef class Tree:
- # The Tree object is a binary tree structure constructed by the
- # TreeBuilder. The tree structure is used for predictions and
- # feature importances.
- # Input/Output layout
- cdef public SIZE_t n_features # Number of features in X
- cdef SIZE_t* n_classes # Number of classes in y[:, k]
- cdef public SIZE_t n_outputs # Number of outputs in y
- cdef public SIZE_t max_n_classes # max(n_classes)
- # Inner structures: values are stored separately from node structure,
- # since size is determined at runtime.
- cdef public SIZE_t max_depth # Max depth of the tree
- cdef public SIZE_t node_count # Counter for node IDs
- cdef public SIZE_t capacity # Capacity of tree, in terms of nodes
- cdef Node* nodes # Array of nodes
- cdef double* value # (capacity, n_outputs, max_n_classes) array of values
- cdef SIZE_t value_stride # = n_outputs * max_n_classes
- # Methods
- cdef SIZE_t _add_node(self, SIZE_t parent, bint is_left, bint is_leaf,
- SIZE_t feature, double threshold, double impurity,
- SIZE_t n_node_samples,
- double weighted_n_node_samples,
- unsigned char missing_go_to_left) except -1 nogil
- cdef int _resize(self, SIZE_t capacity) except -1 nogil
- cdef int _resize_c(self, SIZE_t capacity=*) except -1 nogil
- cdef cnp.ndarray _get_value_ndarray(self)
- cdef cnp.ndarray _get_node_ndarray(self)
- cpdef cnp.ndarray predict(self, object X)
- cpdef cnp.ndarray apply(self, object X)
- cdef cnp.ndarray _apply_dense(self, object X)
- cdef cnp.ndarray _apply_sparse_csr(self, object X)
- cpdef object decision_path(self, object X)
- cdef object _decision_path_dense(self, object X)
- cdef object _decision_path_sparse_csr(self, object X)
- cpdef compute_node_depths(self)
- cpdef compute_feature_importances(self, normalize=*)
- # =============================================================================
- # Tree builder
- # =============================================================================
- cdef class TreeBuilder:
- # The TreeBuilder recursively builds a Tree object from training samples,
- # using a Splitter object for splitting internal nodes and assigning
- # values to leaves.
- #
- # This class controls the various stopping criteria and the node splitting
- # evaluation order, e.g. depth-first or best-first.
- cdef Splitter splitter # Splitting algorithm
- cdef SIZE_t min_samples_split # Minimum number of samples in an internal node
- cdef SIZE_t min_samples_leaf # Minimum number of samples in a leaf
- cdef double min_weight_leaf # Minimum weight in a leaf
- cdef SIZE_t max_depth # Maximal tree depth
- cdef double min_impurity_decrease # Impurity threshold for early stopping
- cpdef build(
- self,
- Tree tree,
- object X,
- const DOUBLE_t[:, ::1] y,
- const DOUBLE_t[:] sample_weight=*,
- const unsigned char[::1] missing_values_in_feature_mask=*,
- )
- cdef _check_input(
- self,
- object X,
- const DOUBLE_t[:, ::1] y,
- const DOUBLE_t[:] sample_weight,
- )
|