| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- import numpy as np
- import pytest
- from numpy.testing import assert_allclose
- from scipy import sparse
- from sklearn.datasets import make_blobs
- from sklearn.linear_model import LogisticRegression
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.utils._testing import assert_almost_equal, assert_array_almost_equal
- from sklearn.utils.class_weight import compute_class_weight, compute_sample_weight
- def test_compute_class_weight():
- # Test (and demo) compute_class_weight.
- y = np.asarray([2, 2, 2, 3, 3, 4])
- classes = np.unique(y)
- cw = compute_class_weight("balanced", classes=classes, y=y)
- # total effect of samples is preserved
- class_counts = np.bincount(y)[2:]
- assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
- assert cw[0] < cw[1] < cw[2]
- def test_compute_class_weight_not_present():
- # Raise error when y does not contain all class labels
- classes = np.arange(4)
- y = np.asarray([0, 0, 0, 1, 1, 2])
- with pytest.raises(ValueError):
- compute_class_weight("balanced", classes=classes, y=y)
- # Fix exception in error message formatting when missing label is a string
- # https://github.com/scikit-learn/scikit-learn/issues/8312
- with pytest.raises(
- ValueError, match=r"The classes, \[0, 1, 2, 3\], are not in class_weight"
- ):
- compute_class_weight({"label_not_present": 1.0}, classes=classes, y=y)
- # Raise error when y has items not in classes
- classes = np.arange(2)
- with pytest.raises(ValueError):
- compute_class_weight("balanced", classes=classes, y=y)
- with pytest.raises(ValueError):
- compute_class_weight({0: 1.0, 1: 2.0}, classes=classes, y=y)
- # y contains a unweighted class that is not in class_weights
- classes = np.asarray(["cat", "dog"])
- y = np.asarray(["dog", "cat", "dog"])
- class_weights = {"dogs": 3, "cat": 2}
- msg = r"The classes, \['dog'\], are not in class_weight"
- with pytest.raises(ValueError, match=msg):
- compute_class_weight(class_weights, classes=classes, y=y)
- def test_compute_class_weight_dict():
- classes = np.arange(3)
- class_weights = {0: 1.0, 1: 2.0, 2: 3.0}
- y = np.asarray([0, 0, 1, 2])
- cw = compute_class_weight(class_weights, classes=classes, y=y)
- # When the user specifies class weights, compute_class_weights should just
- # return them.
- assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw)
- # When a class weight is specified that isn't in classes, the weight is ignored
- class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5}
- cw = compute_class_weight(class_weights, classes=classes, y=y)
- assert_allclose([1.0, 2.0, 3.0], cw)
- class_weights = {-1: 5.0, 0: 4.0, 1: 2.0, 2: 3.0}
- cw = compute_class_weight(class_weights, classes=classes, y=y)
- assert_allclose([4.0, 2.0, 3.0], cw)
- def test_compute_class_weight_invariance():
- # Test that results with class_weight="balanced" is invariant wrt
- # class imbalance if the number of samples is identical.
- # The test uses a balanced two class dataset with 100 datapoints.
- # It creates three versions, one where class 1 is duplicated
- # resulting in 150 points of class 1 and 50 of class 0,
- # one where there are 50 points in class 1 and 150 in class 0,
- # and one where there are 100 points of each class (this one is balanced
- # again).
- # With balancing class weights, all three should give the same model.
- X, y = make_blobs(centers=2, random_state=0)
- # create dataset where class 1 is duplicated twice
- X_1 = np.vstack([X] + [X[y == 1]] * 2)
- y_1 = np.hstack([y] + [y[y == 1]] * 2)
- # create dataset where class 0 is duplicated twice
- X_0 = np.vstack([X] + [X[y == 0]] * 2)
- y_0 = np.hstack([y] + [y[y == 0]] * 2)
- # duplicate everything
- X_ = np.vstack([X] * 2)
- y_ = np.hstack([y] * 2)
- # results should be identical
- logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1)
- logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0)
- logreg = LogisticRegression(class_weight="balanced").fit(X_, y_)
- assert_array_almost_equal(logreg1.coef_, logreg0.coef_)
- assert_array_almost_equal(logreg.coef_, logreg0.coef_)
- def test_compute_class_weight_balanced_negative():
- # Test compute_class_weight when labels are negative
- # Test with balanced class labels.
- classes = np.array([-2, -1, 0])
- y = np.asarray([-1, -1, 0, 0, -2, -2])
- cw = compute_class_weight("balanced", classes=classes, y=y)
- assert len(cw) == len(classes)
- assert_array_almost_equal(cw, np.array([1.0, 1.0, 1.0]))
- # Test with unbalanced class labels.
- y = np.asarray([-1, 0, 0, -2, -2, -2])
- cw = compute_class_weight("balanced", classes=classes, y=y)
- assert len(cw) == len(classes)
- class_counts = np.bincount(y + 2)
- assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
- assert_array_almost_equal(cw, [2.0 / 3, 2.0, 1.0])
- def test_compute_class_weight_balanced_unordered():
- # Test compute_class_weight when classes are unordered
- classes = np.array([1, 0, 3])
- y = np.asarray([1, 0, 0, 3, 3, 3])
- cw = compute_class_weight("balanced", classes=classes, y=y)
- class_counts = np.bincount(y)[classes]
- assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
- assert_array_almost_equal(cw, [2.0, 1.0, 2.0 / 3])
- def test_compute_class_weight_default():
- # Test for the case where no weight is given for a present class.
- # Current behaviour is to assign the unweighted classes a weight of 1.
- y = np.asarray([2, 2, 2, 3, 3, 4])
- classes = np.unique(y)
- classes_len = len(classes)
- # Test for non specified weights
- cw = compute_class_weight(None, classes=classes, y=y)
- assert len(cw) == classes_len
- assert_array_almost_equal(cw, np.ones(3))
- # Tests for partly specified weights
- cw = compute_class_weight({2: 1.5}, classes=classes, y=y)
- assert len(cw) == classes_len
- assert_array_almost_equal(cw, [1.5, 1.0, 1.0])
- cw = compute_class_weight({2: 1.5, 4: 0.5}, classes=classes, y=y)
- assert len(cw) == classes_len
- assert_array_almost_equal(cw, [1.5, 1.0, 0.5])
- def test_compute_sample_weight():
- # Test (and demo) compute_sample_weight.
- # Test with balanced classes
- y = np.asarray([1, 1, 1, 2, 2, 2])
- sample_weight = compute_sample_weight("balanced", y)
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
- # Test with user-defined weights
- sample_weight = compute_sample_weight({1: 2, 2: 1}, y)
- assert_array_almost_equal(sample_weight, [2.0, 2.0, 2.0, 1.0, 1.0, 1.0])
- # Test with column vector of balanced classes
- y = np.asarray([[1], [1], [1], [2], [2], [2]])
- sample_weight = compute_sample_weight("balanced", y)
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
- # Test with unbalanced classes
- y = np.asarray([1, 1, 1, 2, 2, 2, 3])
- sample_weight = compute_sample_weight("balanced", y)
- expected_balanced = np.array(
- [0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]
- )
- assert_array_almost_equal(sample_weight, expected_balanced, decimal=4)
- # Test with `None` weights
- sample_weight = compute_sample_weight(None, y)
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
- # Test with multi-output of balanced classes
- y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
- sample_weight = compute_sample_weight("balanced", y)
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
- # Test with multi-output with user-defined weights
- y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
- sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y)
- assert_array_almost_equal(sample_weight, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])
- # Test with multi-output of unbalanced classes
- y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]])
- sample_weight = compute_sample_weight("balanced", y)
- assert_array_almost_equal(sample_weight, expected_balanced**2, decimal=3)
- def test_compute_sample_weight_with_subsample():
- # Test compute_sample_weight with subsamples specified.
- # Test with balanced classes and all samples present
- y = np.asarray([1, 1, 1, 2, 2, 2])
- sample_weight = compute_sample_weight("balanced", y, indices=range(6))
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
- # Test with column vector of balanced classes and all samples present
- y = np.asarray([[1], [1], [1], [2], [2], [2]])
- sample_weight = compute_sample_weight("balanced", y, indices=range(6))
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
- # Test with a subsample
- y = np.asarray([1, 1, 1, 2, 2, 2])
- sample_weight = compute_sample_weight("balanced", y, indices=range(4))
- assert_array_almost_equal(sample_weight, [2.0 / 3, 2.0 / 3, 2.0 / 3, 2.0, 2.0, 2.0])
- # Test with a bootstrap subsample
- y = np.asarray([1, 1, 1, 2, 2, 2])
- sample_weight = compute_sample_weight("balanced", y, indices=[0, 1, 1, 2, 2, 3])
- expected_balanced = np.asarray([0.6, 0.6, 0.6, 3.0, 3.0, 3.0])
- assert_array_almost_equal(sample_weight, expected_balanced)
- # Test with a bootstrap subsample for multi-output
- y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
- sample_weight = compute_sample_weight("balanced", y, indices=[0, 1, 1, 2, 2, 3])
- assert_array_almost_equal(sample_weight, expected_balanced**2)
- # Test with a missing class
- y = np.asarray([1, 1, 1, 2, 2, 2, 3])
- sample_weight = compute_sample_weight("balanced", y, indices=range(6))
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0])
- # Test with a missing class for multi-output
- y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]])
- sample_weight = compute_sample_weight("balanced", y, indices=range(6))
- assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0])
- def test_compute_sample_weight_errors():
- # Test compute_sample_weight raises errors expected.
- # Invalid preset string
- y = np.asarray([1, 1, 1, 2, 2, 2])
- y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
- with pytest.raises(ValueError):
- compute_sample_weight("ni", y)
- with pytest.raises(ValueError):
- compute_sample_weight("ni", y, indices=range(4))
- with pytest.raises(ValueError):
- compute_sample_weight("ni", y_)
- with pytest.raises(ValueError):
- compute_sample_weight("ni", y_, indices=range(4))
- # Not "balanced" for subsample
- with pytest.raises(ValueError):
- compute_sample_weight({1: 2, 2: 1}, y, indices=range(4))
- # Not a list or preset for multi-output
- with pytest.raises(ValueError):
- compute_sample_weight({1: 2, 2: 1}, y_)
- # Incorrect length list for multi-output
- with pytest.raises(ValueError):
- compute_sample_weight([{1: 2, 2: 1}], y_)
- def test_compute_sample_weight_more_than_32():
- # Non-regression smoke test for #12146
- y = np.arange(50) # more than 32 distinct classes
- indices = np.arange(50) # use subsampling
- weight = compute_sample_weight("balanced", y, indices=indices)
- assert_array_almost_equal(weight, np.ones(y.shape[0]))
- def test_class_weight_does_not_contains_more_classes():
- """Check that class_weight can contain more labels than in y.
- Non-regression test for #22413
- """
- tree = DecisionTreeClassifier(class_weight={0: 1, 1: 10, 2: 20})
- # Does not raise
- tree.fit([[0, 0, 1], [1, 0, 1], [1, 2, 0]], [0, 0, 1])
- def test_compute_sample_weight_sparse():
- """Check that we can compute weight for sparse `y`."""
- y = sparse.csc_matrix(np.asarray([0, 1, 1])).T
- sample_weight = compute_sample_weight("balanced", y)
- assert_allclose(sample_weight, [1.5, 0.75, 0.75])
|